Update dependencies. Remove custom gpt4all_j wrapper.
This commit is contained in:
parent
92244a90b4
commit
bdd8c8748b
160
gpt4all_j.py
160
gpt4all_j.py
|
@ -1,160 +0,0 @@
|
|||
"""Wrapper for the GPT4All-J model."""
|
||||
from functools import partial
|
||||
from typing import Any, Dict, List, Mapping, Optional, Set
|
||||
|
||||
from pydantic import Extra, Field, root_validator
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.llms.base import LLM
|
||||
from langchain.llms.utils import enforce_stop_tokens
|
||||
|
||||
|
||||
class GPT4All_J(LLM):
|
||||
r"""Wrapper around GPT4All-J language models.
|
||||
|
||||
To use, you should have the ``pygpt4all`` python package installed, the
|
||||
pre-trained model file, and the model's config information.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.llms import GPT4All_J
|
||||
model = GPT4All_J(model="./models/gpt4all-model.bin")
|
||||
|
||||
# Simplest invocation
|
||||
response = model("Once upon a time, ")
|
||||
"""
|
||||
|
||||
model: str
|
||||
"""Path to the pre-trained GPT4All model file."""
|
||||
|
||||
n_threads: Optional[int] = Field(4, alias="n_threads")
|
||||
"""Number of threads to use."""
|
||||
|
||||
n_predict: Optional[int] = 256
|
||||
"""The maximum number of tokens to generate."""
|
||||
|
||||
temp: Optional[float] = 0.8
|
||||
"""The temperature to use for sampling."""
|
||||
|
||||
top_p: Optional[float] = 0.95
|
||||
"""The top-p value to use for sampling."""
|
||||
|
||||
top_k: Optional[int] = 40
|
||||
"""The top-k value to use for sampling."""
|
||||
|
||||
echo: Optional[bool] = False
|
||||
"""Whether to echo the prompt."""
|
||||
|
||||
stop: Optional[List[str]] = []
|
||||
"""A list of strings to stop generation when encountered."""
|
||||
|
||||
repeat_last_n: Optional[int] = 64
|
||||
"Last n tokens to penalize"
|
||||
|
||||
repeat_penalty: Optional[float] = 1.3
|
||||
"""The penalty to apply to repeated tokens."""
|
||||
|
||||
n_batch: int = Field(1, alias="n_batch")
|
||||
"""Batch size for prompt processing."""
|
||||
|
||||
streaming: bool = False
|
||||
"""Whether to stream the results or not."""
|
||||
|
||||
client: Any = None #: :meta private:
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {
|
||||
"seed": self.seed,
|
||||
"n_predict": self.n_predict,
|
||||
"n_threads": self.n_threads,
|
||||
"n_batch": self.n_batch,
|
||||
"repeat_last_n": self.repeat_last_n,
|
||||
"repeat_penalty": self.repeat_penalty,
|
||||
"top_k": self.top_k,
|
||||
"top_p": self.top_p,
|
||||
"temp": self.temp,
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _llama_param_names() -> Set[str]:
|
||||
"""Get the identifying parameters."""
|
||||
return {}
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that the python package exists in the environment."""
|
||||
try:
|
||||
from pygpt4all.models.gpt4all_j import GPT4All_J as GPT4AllModel
|
||||
|
||||
llama_keys = cls._llama_param_names()
|
||||
model_kwargs = {k: v for k, v in values.items() if k in llama_keys}
|
||||
values["client"] = GPT4AllModel(
|
||||
model_path=values["model"],
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import pygpt4all python package. "
|
||||
"Please install it with `pip install pygpt4all`."
|
||||
)
|
||||
return values
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {
|
||||
"model": self.model,
|
||||
**self._default_params,
|
||||
**{
|
||||
k: v
|
||||
for k, v in self.__dict__.items()
|
||||
if k in GPT4All_J._llama_param_names()
|
||||
},
|
||||
}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return the type of llm."""
|
||||
return "gpt4all"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
) -> str:
|
||||
r"""Call out to GPT4All's generate method.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: A list of strings to stop generation when encountered.
|
||||
|
||||
Returns:
|
||||
The string generated by the model.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
prompt = "Once upon a time, "
|
||||
response = model(prompt, n_predict=55)
|
||||
"""
|
||||
if run_manager:
|
||||
text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose)
|
||||
text = self.client.generate(
|
||||
prompt,
|
||||
new_text_callback=text_callback
|
||||
)
|
||||
else:
|
||||
text = self.client.generate(prompt)
|
||||
if stop is not None:
|
||||
text = enforce_stop_tokens(text, stop)
|
||||
return text
|
|
@ -1,8 +1,8 @@
|
|||
from gpt4all_j import GPT4All_J
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.embeddings import LlamaCppEmbeddings
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.llms import GPT4All
|
||||
|
||||
def main():
|
||||
# Load stored vectorstore
|
||||
|
@ -12,14 +12,28 @@ def main():
|
|||
retriever = db.as_retriever()
|
||||
# Prepare the LLM
|
||||
callbacks = [StreamingStdOutCallbackHandler()]
|
||||
llm = GPT4All_J(model='./models/ggml-gpt4all-j-v1.3-groovy.bin', callbacks=callbacks, verbose=False)
|
||||
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
|
||||
llm = GPT4All(model='./models/ggml-gpt4all-j-v1.3-groovy.bin', backend='gptj', callbacks=callbacks, verbose=False)
|
||||
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
||||
# Interactive questions and answers
|
||||
while True:
|
||||
query = input("Enter a query: ")
|
||||
query = input("\nEnter a query: ")
|
||||
if query == "exit":
|
||||
break
|
||||
qa.run(query)
|
||||
|
||||
# Get the answer from the chain
|
||||
res = qa(query)
|
||||
answer, docs = res['result'], res['source_documents']
|
||||
|
||||
# Print the result
|
||||
print("\n\n> Question:")
|
||||
print(query)
|
||||
print("\n> Answer:")
|
||||
print(answer)
|
||||
|
||||
# Print the relevant sources used for the answer
|
||||
for document in docs:
|
||||
print("\n> " + document.metadata["source"] + ":")
|
||||
print(document.page_content)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,5 +1,4 @@
|
|||
langchain==0.0.154
|
||||
pygptj==1.0.10
|
||||
pygpt4all==1.0.1
|
||||
chromadb==0.3.21
|
||||
llama-cpp-python==0.1.41
|
||||
langchain==0.0.162
|
||||
pygpt4all==1.1.0
|
||||
chromadb==0.3.22
|
||||
llama-cpp-python==0.1.47
|
||||
|
|
Loading…
Reference in New Issue