Use a different text splitter to improve results. Ingest takes an argument pointing to the doc to ingest.
This commit is contained in:
parent
a05186b598
commit
92244a90b4
|
@ -20,13 +20,12 @@ This repo uses a [state of the union transcript](https://github.com/imartinez/pr
|
|||
|
||||
## Instructions for ingesting your own dataset
|
||||
|
||||
Place your .txt file in `source_documents` folder.
|
||||
Edit `ingest.py` loader to point it to your document.
|
||||
Get your .txt file ready.
|
||||
|
||||
Run the following command to ingest the data.
|
||||
|
||||
```shell
|
||||
python ingest.py
|
||||
python ingest.py <path_to_your_txt_file>
|
||||
```
|
||||
|
||||
It will create a `db` folder containing the local vectorstore. Will take time, depending on the size of your document.
|
||||
|
|
|
@ -1,13 +1,14 @@
|
|||
from langchain.document_loaders import TextLoader
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.embeddings import LlamaCppEmbeddings
|
||||
from sys import argv
|
||||
|
||||
def main():
|
||||
# Load document and split in chunks
|
||||
loader = TextLoader('./source_documents/state_of_the_union.txt', encoding='utf8')
|
||||
loader = TextLoader(argv[1], encoding="utf8")
|
||||
documents = loader.load()
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
||||
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
||||
texts = text_splitter.split_documents(documents)
|
||||
# Create embeddings
|
||||
llama = LlamaCppEmbeddings(model_path="./models/ggml-model-q4_0.bin")
|
||||
|
|
Loading…
Reference in New Issue