Update dependencies. Remove custom gpt4all_j wrapper.
This commit is contained in:
parent
92244a90b4
commit
bdd8c8748b
160
gpt4all_j.py
160
gpt4all_j.py
|
@ -1,160 +0,0 @@
|
||||||
"""Wrapper for the GPT4All-J model."""
|
|
||||||
from functools import partial
|
|
||||||
from typing import Any, Dict, List, Mapping, Optional, Set
|
|
||||||
|
|
||||||
from pydantic import Extra, Field, root_validator
|
|
||||||
|
|
||||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
|
||||||
from langchain.llms.base import LLM
|
|
||||||
from langchain.llms.utils import enforce_stop_tokens
|
|
||||||
|
|
||||||
|
|
||||||
class GPT4All_J(LLM):
|
|
||||||
r"""Wrapper around GPT4All-J language models.
|
|
||||||
|
|
||||||
To use, you should have the ``pygpt4all`` python package installed, the
|
|
||||||
pre-trained model file, and the model's config information.
|
|
||||||
|
|
||||||
Example:
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
from langchain.llms import GPT4All_J
|
|
||||||
model = GPT4All_J(model="./models/gpt4all-model.bin")
|
|
||||||
|
|
||||||
# Simplest invocation
|
|
||||||
response = model("Once upon a time, ")
|
|
||||||
"""
|
|
||||||
|
|
||||||
model: str
|
|
||||||
"""Path to the pre-trained GPT4All model file."""
|
|
||||||
|
|
||||||
n_threads: Optional[int] = Field(4, alias="n_threads")
|
|
||||||
"""Number of threads to use."""
|
|
||||||
|
|
||||||
n_predict: Optional[int] = 256
|
|
||||||
"""The maximum number of tokens to generate."""
|
|
||||||
|
|
||||||
temp: Optional[float] = 0.8
|
|
||||||
"""The temperature to use for sampling."""
|
|
||||||
|
|
||||||
top_p: Optional[float] = 0.95
|
|
||||||
"""The top-p value to use for sampling."""
|
|
||||||
|
|
||||||
top_k: Optional[int] = 40
|
|
||||||
"""The top-k value to use for sampling."""
|
|
||||||
|
|
||||||
echo: Optional[bool] = False
|
|
||||||
"""Whether to echo the prompt."""
|
|
||||||
|
|
||||||
stop: Optional[List[str]] = []
|
|
||||||
"""A list of strings to stop generation when encountered."""
|
|
||||||
|
|
||||||
repeat_last_n: Optional[int] = 64
|
|
||||||
"Last n tokens to penalize"
|
|
||||||
|
|
||||||
repeat_penalty: Optional[float] = 1.3
|
|
||||||
"""The penalty to apply to repeated tokens."""
|
|
||||||
|
|
||||||
n_batch: int = Field(1, alias="n_batch")
|
|
||||||
"""Batch size for prompt processing."""
|
|
||||||
|
|
||||||
streaming: bool = False
|
|
||||||
"""Whether to stream the results or not."""
|
|
||||||
|
|
||||||
client: Any = None #: :meta private:
|
|
||||||
|
|
||||||
class Config:
|
|
||||||
"""Configuration for this pydantic object."""
|
|
||||||
|
|
||||||
extra = Extra.forbid
|
|
||||||
|
|
||||||
@property
|
|
||||||
def _default_params(self) -> Dict[str, Any]:
|
|
||||||
"""Get the identifying parameters."""
|
|
||||||
return {
|
|
||||||
"seed": self.seed,
|
|
||||||
"n_predict": self.n_predict,
|
|
||||||
"n_threads": self.n_threads,
|
|
||||||
"n_batch": self.n_batch,
|
|
||||||
"repeat_last_n": self.repeat_last_n,
|
|
||||||
"repeat_penalty": self.repeat_penalty,
|
|
||||||
"top_k": self.top_k,
|
|
||||||
"top_p": self.top_p,
|
|
||||||
"temp": self.temp,
|
|
||||||
}
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _llama_param_names() -> Set[str]:
|
|
||||||
"""Get the identifying parameters."""
|
|
||||||
return {}
|
|
||||||
|
|
||||||
@root_validator()
|
|
||||||
def validate_environment(cls, values: Dict) -> Dict:
|
|
||||||
"""Validate that the python package exists in the environment."""
|
|
||||||
try:
|
|
||||||
from pygpt4all.models.gpt4all_j import GPT4All_J as GPT4AllModel
|
|
||||||
|
|
||||||
llama_keys = cls._llama_param_names()
|
|
||||||
model_kwargs = {k: v for k, v in values.items() if k in llama_keys}
|
|
||||||
values["client"] = GPT4AllModel(
|
|
||||||
model_path=values["model"],
|
|
||||||
**model_kwargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
except ImportError:
|
|
||||||
raise ValueError(
|
|
||||||
"Could not import pygpt4all python package. "
|
|
||||||
"Please install it with `pip install pygpt4all`."
|
|
||||||
)
|
|
||||||
return values
|
|
||||||
|
|
||||||
@property
|
|
||||||
def _identifying_params(self) -> Mapping[str, Any]:
|
|
||||||
"""Get the identifying parameters."""
|
|
||||||
return {
|
|
||||||
"model": self.model,
|
|
||||||
**self._default_params,
|
|
||||||
**{
|
|
||||||
k: v
|
|
||||||
for k, v in self.__dict__.items()
|
|
||||||
if k in GPT4All_J._llama_param_names()
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
@property
|
|
||||||
def _llm_type(self) -> str:
|
|
||||||
"""Return the type of llm."""
|
|
||||||
return "gpt4all"
|
|
||||||
|
|
||||||
def _call(
|
|
||||||
self,
|
|
||||||
prompt: str,
|
|
||||||
stop: Optional[List[str]] = None,
|
|
||||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
||||||
) -> str:
|
|
||||||
r"""Call out to GPT4All's generate method.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
prompt: The prompt to pass into the model.
|
|
||||||
stop: A list of strings to stop generation when encountered.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
The string generated by the model.
|
|
||||||
|
|
||||||
Example:
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
prompt = "Once upon a time, "
|
|
||||||
response = model(prompt, n_predict=55)
|
|
||||||
"""
|
|
||||||
if run_manager:
|
|
||||||
text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose)
|
|
||||||
text = self.client.generate(
|
|
||||||
prompt,
|
|
||||||
new_text_callback=text_callback
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
text = self.client.generate(prompt)
|
|
||||||
if stop is not None:
|
|
||||||
text = enforce_stop_tokens(text, stop)
|
|
||||||
return text
|
|
|
@ -1,8 +1,8 @@
|
||||||
from gpt4all_j import GPT4All_J
|
|
||||||
from langchain.chains import RetrievalQA
|
from langchain.chains import RetrievalQA
|
||||||
from langchain.embeddings import LlamaCppEmbeddings
|
from langchain.embeddings import LlamaCppEmbeddings
|
||||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||||
from langchain.vectorstores import Chroma
|
from langchain.vectorstores import Chroma
|
||||||
|
from langchain.llms import GPT4All
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# Load stored vectorstore
|
# Load stored vectorstore
|
||||||
|
@ -12,14 +12,28 @@ def main():
|
||||||
retriever = db.as_retriever()
|
retriever = db.as_retriever()
|
||||||
# Prepare the LLM
|
# Prepare the LLM
|
||||||
callbacks = [StreamingStdOutCallbackHandler()]
|
callbacks = [StreamingStdOutCallbackHandler()]
|
||||||
llm = GPT4All_J(model='./models/ggml-gpt4all-j-v1.3-groovy.bin', callbacks=callbacks, verbose=False)
|
llm = GPT4All(model='./models/ggml-gpt4all-j-v1.3-groovy.bin', backend='gptj', callbacks=callbacks, verbose=False)
|
||||||
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
|
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
||||||
# Interactive questions and answers
|
# Interactive questions and answers
|
||||||
while True:
|
while True:
|
||||||
query = input("Enter a query: ")
|
query = input("\nEnter a query: ")
|
||||||
if query == "exit":
|
if query == "exit":
|
||||||
break
|
break
|
||||||
qa.run(query)
|
|
||||||
|
# Get the answer from the chain
|
||||||
|
res = qa(query)
|
||||||
|
answer, docs = res['result'], res['source_documents']
|
||||||
|
|
||||||
|
# Print the result
|
||||||
|
print("\n\n> Question:")
|
||||||
|
print(query)
|
||||||
|
print("\n> Answer:")
|
||||||
|
print(answer)
|
||||||
|
|
||||||
|
# Print the relevant sources used for the answer
|
||||||
|
for document in docs:
|
||||||
|
print("\n> " + document.metadata["source"] + ":")
|
||||||
|
print(document.page_content)
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
|
@ -1,5 +1,4 @@
|
||||||
langchain==0.0.154
|
langchain==0.0.162
|
||||||
pygptj==1.0.10
|
pygpt4all==1.1.0
|
||||||
pygpt4all==1.0.1
|
chromadb==0.3.22
|
||||||
chromadb==0.3.21
|
llama-cpp-python==0.1.47
|
||||||
llama-cpp-python==0.1.41
|
|
||||||
|
|
Loading…
Reference in New Issue