Merge pull request #53 from alxspiker/main
.env + LlamaCpp + PDF/CSV + Ingest All
This commit is contained in:
		
						commit
						bc7ce4395b
					
				
							
								
								
									
										31
									
								
								README.md
								
								
								
								
							
							
						
						
									
										31
									
								
								README.md
								
								
								
								
							|  | @ -1,7 +1,7 @@ | |||
| # privateGPT | ||||
| Ask questions to your documents without an internet connection, using the power of LLMs. 100% private, no data leaves your execution environment at any point. You can ingest documents and ask questions without an internet connection! | ||||
| 
 | ||||
| Built with [LangChain](https://github.com/hwchase17/langchain) and [GPT4All](https://github.com/nomic-ai/gpt4all) | ||||
| Built with [LangChain](https://github.com/hwchase17/langchain) and [GPT4All](https://github.com/nomic-ai/gpt4all) and [LlamaCpp](https://github.com/ggerganov/llama.cpp) | ||||
| 
 | ||||
| <img width="902" alt="demo" src="https://user-images.githubusercontent.com/721666/236942256-985801c9-25b9-48ef-80be-3acbb4575164.png"> | ||||
| 
 | ||||
|  | @ -13,26 +13,35 @@ In order to set your environment up to run the code here, first install all requ | |||
| pip install -r requirements.txt | ||||
| ``` | ||||
| 
 | ||||
| Then, download the 2 models and place them in a folder called `./models`: | ||||
| - LLM: default to [ggml-gpt4all-j-v1.3-groovy.bin](https://gpt4all.io/models/ggml-gpt4all-j-v1.3-groovy.bin). If you prefer a different GPT4All-J compatible model, just download it and reference it in `privateGPT.py`. | ||||
| - Embedding: default to [ggml-model-q4_0.bin](https://huggingface.co/Pi3141/alpaca-native-7B-ggml/resolve/397e872bf4c83f4c642317a5bf65ce84a105786e/ggml-model-q4_0.bin). If you prefer a different compatible Embeddings model, just download it and reference it in `privateGPT.py` and `ingest.py`. | ||||
| Rename example.env to .env and edit the variables appropriately. | ||||
| ``` | ||||
| MODEL_TYPE: supports LlamaCpp or GPT4All | ||||
| PERSIST_DIRECTORY: is the folder you want your vectorstore in | ||||
| LLAMA_EMBEDDINGS_MODEL: Path to your LlamaCpp supported embeddings model | ||||
| MODEL_PATH: Path to your GPT4All or LlamaCpp supported LLM | ||||
| MODEL_N_CTX: Maximum token limit for both embeddings and LLM models | ||||
| ``` | ||||
| 
 | ||||
| Then, download the 2 models and place them in a directory of your choice (Ensure to update your .env with the model paths): | ||||
| - LLM: default to [ggml-gpt4all-j-v1.3-groovy.bin](https://gpt4all.io/models/ggml-gpt4all-j-v1.3-groovy.bin). If you prefer a different GPT4All-J compatible model, just download it and reference it in your `.env` file. | ||||
| - Embedding: default to [ggml-model-q4_0.bin](https://huggingface.co/Pi3141/alpaca-native-7B-ggml/resolve/397e872bf4c83f4c642317a5bf65ce84a105786e/ggml-model-q4_0.bin). If you prefer a different compatible Embeddings model, just download it and reference it in your `.env` file. | ||||
| 
 | ||||
| ## Test dataset | ||||
| This repo uses a [state of the union transcript](https://github.com/imartinez/privateGPT/blob/main/source_documents/state_of_the_union.txt) as an example. | ||||
| 
 | ||||
| ## Instructions for ingesting your own dataset | ||||
| 
 | ||||
| Get your .txt file ready. | ||||
| Put any and all of your .txt, .pdf, or .csv files into the source_documents directory | ||||
| 
 | ||||
| Run the following command to ingest the data. | ||||
| Run the following command to ingest all the data. | ||||
| 
 | ||||
| ```shell | ||||
| python ingest.py <path_to_your_txt_file> | ||||
| python ingest.py | ||||
| ``` | ||||
| 
 | ||||
| It will create a `db` folder containing the local vectorstore. Will take time, depending on the size of your document. | ||||
| You can ingest as many documents as you want by running `ingest`, and all will be accumulated in the local embeddings database.  | ||||
| If you want to start from scratch, delete the `db` folder. | ||||
| It will create a `db` folder containing the local vectorstore. Will take time, depending on the size of your documents. | ||||
| You can ingest as many documents as you want, and all will be accumulated in the local embeddings database.  | ||||
| If you want to start from an empty database, delete the `db` folder. | ||||
| 
 | ||||
| Note: during the ingest process no data leaves your local environment. You could ingest without an internet connection. | ||||
| 
 | ||||
|  | @ -59,7 +68,7 @@ Type `exit` to finish the script. | |||
| Selecting the right local models and the power of `LangChain` you can run the entire pipeline locally, without any data leaving your environment, and with reasonable performance. | ||||
| 
 | ||||
| - `ingest.py` uses `LangChain` tools to parse the document and create embeddings locally using `LlamaCppEmbeddings`. It then stores the result in a local vector database using `Chroma` vector store.  | ||||
| - `privateGPT.py` uses a local LLM based on `GPT4All-J` to understand questions and create answers. The context for the answers is extracted from the local vector store using a similarity search to locate the right piece of context from the docs. | ||||
| - `privateGPT.py` uses a local LLM based on `GPT4All-J` or `LlamaCpp` to understand questions and create answers. The context for the answers is extracted from the local vector store using a similarity search to locate the right piece of context from the docs. | ||||
| - `GPT4All-J` wrapper was introduced in LangChain 0.0.162. | ||||
| 
 | ||||
| # Disclaimer | ||||
|  |  | |||
|  | @ -0,0 +1,5 @@ | |||
| PERSIST_DIRECTORY=db | ||||
| LLAMA_EMBEDDINGS_MODEL=models/ggml-model-q4_0.bin | ||||
| MODEL_TYPE=GPT4All | ||||
| MODEL_PATH=models/ggml-gpt4all-j-v1.3-groovy.bin | ||||
| MODEL_N_CTX=1000 | ||||
							
								
								
									
										18
									
								
								ingest.py
								
								
								
								
							
							
						
						
									
										18
									
								
								ingest.py
								
								
								
								
							|  | @ -1,19 +1,29 @@ | |||
| from langchain.document_loaders import TextLoader | ||||
| import os | ||||
| from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader | ||||
| from langchain.text_splitter import RecursiveCharacterTextSplitter | ||||
| from langchain.vectorstores import Chroma | ||||
| from langchain.embeddings import LlamaCppEmbeddings | ||||
| from sys import argv | ||||
| from constants import PERSIST_DIRECTORY | ||||
| from constants import CHROMA_SETTINGS | ||||
| 
 | ||||
| def main(): | ||||
|     llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL') | ||||
|     persist_directory = os.environ.get('PERSIST_DIRECTORY') | ||||
|     model_n_ctx = os.environ.get('MODEL_N_CTX') | ||||
|     # Load document and split in chunks | ||||
|     loader = TextLoader(argv[1], encoding="utf8") | ||||
|     for root, dirs, files in os.walk("source_documents"): | ||||
|         for file in files: | ||||
|             if file.endswith(".txt"): | ||||
|                 loader = TextLoader(os.path.join(root, file), encoding="utf8") | ||||
|             elif file.endswith(".pdf"): | ||||
|                 loader = PDFMinerLoader(os.path.join(root, file)) | ||||
|             elif file.endswith(".csv"): | ||||
|                 loader = CSVLoader(os.path.join(root, file)) | ||||
|     documents = loader.load() | ||||
|     text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) | ||||
|     texts = text_splitter.split_documents(documents) | ||||
|     # Create embeddings | ||||
|     llama = LlamaCppEmbeddings(model_path="./models/ggml-model-q4_0.bin") | ||||
|     llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx) | ||||
|     # Create and store locally vectorstore | ||||
|     db = Chroma.from_documents(texts, llama, persist_directory=PERSIST_DIRECTORY, client_settings=CHROMA_SETTINGS) | ||||
|     db.persist() | ||||
|  |  | |||
|  | @ -2,18 +2,32 @@ from langchain.chains import RetrievalQA | |||
| from langchain.embeddings import LlamaCppEmbeddings | ||||
| from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | ||||
| from langchain.vectorstores import Chroma | ||||
| from langchain.llms import GPT4All | ||||
| from constants import PERSIST_DIRECTORY | ||||
| from langchain.llms import GPT4All, LlamaCpp | ||||
| import os | ||||
| 
 | ||||
| llama_embeddings_model = os.environ.get("LLAMA_EMBEDDINGS_MODEL") | ||||
| persist_directory = os.environ.get('PERSIST_DIRECTORY') | ||||
| 
 | ||||
| model_type = os.environ.get('MODEL_TYPE') | ||||
| model_path = os.environ.get('MODEL_PATH') | ||||
| model_n_ctx = os.environ.get('MODEL_N_CTX') | ||||
| 
 | ||||
| from constants import CHROMA_SETTINGS | ||||
| 
 | ||||
| def main():         | ||||
|     # Load stored vectorstore | ||||
|     llama = LlamaCppEmbeddings(model_path="./models/ggml-model-q4_0.bin") | ||||
|     db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=llama, client_settings=CHROMA_SETTINGS) | ||||
| def main(): | ||||
|     llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx) | ||||
|     db = Chroma(persist_directory=persist_directory, embedding_function=llama, client_settings=CHROMA_SETTINGS) | ||||
|     retriever = db.as_retriever() | ||||
|     # Prepare the LLM | ||||
|     callbacks = [StreamingStdOutCallbackHandler()] | ||||
|     llm = GPT4All(model='./models/ggml-gpt4all-j-v1.3-groovy.bin', backend='gptj', callbacks=callbacks, verbose=False) | ||||
|     match model_type: | ||||
|         case "LlamaCpp": | ||||
|             llm = LlamaCpp(model_path=model_path, n_ctx=model_n_ctx, callbacks=callbacks, verbose=False) | ||||
|         case "GPT4All": | ||||
|             llm = GPT4All(model=model_path, n_ctx=model_n_ctx, backend='gptj', callbacks=callbacks, verbose=False) | ||||
|         case _default: | ||||
|             print(f"Model {model_type} not supported!") | ||||
|             exit; | ||||
|     qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True) | ||||
|     # Interactive questions and answers | ||||
|     while True: | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue