diff --git a/README.md b/README.md
index b5e6a31..54c7a01 100644
--- a/README.md
+++ b/README.md
@@ -1,7 +1,7 @@
# privateGPT
Ask questions to your documents without an internet connection, using the power of LLMs. 100% private, no data leaves your execution environment at any point. You can ingest documents and ask questions without an internet connection!
-Built with [LangChain](https://github.com/hwchase17/langchain) and [GPT4All](https://github.com/nomic-ai/gpt4all)
+Built with [LangChain](https://github.com/hwchase17/langchain) and [GPT4All](https://github.com/nomic-ai/gpt4all) and [LlamaCpp](https://github.com/ggerganov/llama.cpp)
@@ -13,26 +13,35 @@ In order to set your environment up to run the code here, first install all requ
pip install -r requirements.txt
```
-Then, download the 2 models and place them in a folder called `./models`:
-- LLM: default to [ggml-gpt4all-j-v1.3-groovy.bin](https://gpt4all.io/models/ggml-gpt4all-j-v1.3-groovy.bin). If you prefer a different GPT4All-J compatible model, just download it and reference it in `privateGPT.py`.
-- Embedding: default to [ggml-model-q4_0.bin](https://huggingface.co/Pi3141/alpaca-native-7B-ggml/resolve/397e872bf4c83f4c642317a5bf65ce84a105786e/ggml-model-q4_0.bin). If you prefer a different compatible Embeddings model, just download it and reference it in `privateGPT.py` and `ingest.py`.
+Rename example.env to .env and edit the variables appropriately.
+```
+MODEL_TYPE: supports LlamaCpp or GPT4All
+PERSIST_DIRECTORY: is the folder you want your vectorstore in
+LLAMA_EMBEDDINGS_MODEL: Path to your LlamaCpp supported embeddings model
+MODEL_PATH: Path to your GPT4All or LlamaCpp supported LLM
+MODEL_N_CTX: Maximum token limit for both embeddings and LLM models
+```
+
+Then, download the 2 models and place them in a directory of your choice (Ensure to update your .env with the model paths):
+- LLM: default to [ggml-gpt4all-j-v1.3-groovy.bin](https://gpt4all.io/models/ggml-gpt4all-j-v1.3-groovy.bin). If you prefer a different GPT4All-J compatible model, just download it and reference it in your `.env` file.
+- Embedding: default to [ggml-model-q4_0.bin](https://huggingface.co/Pi3141/alpaca-native-7B-ggml/resolve/397e872bf4c83f4c642317a5bf65ce84a105786e/ggml-model-q4_0.bin). If you prefer a different compatible Embeddings model, just download it and reference it in your `.env` file.
## Test dataset
This repo uses a [state of the union transcript](https://github.com/imartinez/privateGPT/blob/main/source_documents/state_of_the_union.txt) as an example.
## Instructions for ingesting your own dataset
-Get your .txt file ready.
+Put any and all of your .txt, .pdf, or .csv files into the source_documents directory
-Run the following command to ingest the data.
+Run the following command to ingest all the data.
```shell
-python ingest.py
+python ingest.py
```
-It will create a `db` folder containing the local vectorstore. Will take time, depending on the size of your document.
-You can ingest as many documents as you want by running `ingest`, and all will be accumulated in the local embeddings database.
-If you want to start from scratch, delete the `db` folder.
+It will create a `db` folder containing the local vectorstore. Will take time, depending on the size of your documents.
+You can ingest as many documents as you want, and all will be accumulated in the local embeddings database.
+If you want to start from an empty database, delete the `db` folder.
Note: during the ingest process no data leaves your local environment. You could ingest without an internet connection.
@@ -59,7 +68,7 @@ Type `exit` to finish the script.
Selecting the right local models and the power of `LangChain` you can run the entire pipeline locally, without any data leaving your environment, and with reasonable performance.
- `ingest.py` uses `LangChain` tools to parse the document and create embeddings locally using `LlamaCppEmbeddings`. It then stores the result in a local vector database using `Chroma` vector store.
-- `privateGPT.py` uses a local LLM based on `GPT4All-J` to understand questions and create answers. The context for the answers is extracted from the local vector store using a similarity search to locate the right piece of context from the docs.
+- `privateGPT.py` uses a local LLM based on `GPT4All-J` or `LlamaCpp` to understand questions and create answers. The context for the answers is extracted from the local vector store using a similarity search to locate the right piece of context from the docs.
- `GPT4All-J` wrapper was introduced in LangChain 0.0.162.
# Disclaimer
diff --git a/example.env b/example.env
new file mode 100644
index 0000000..149eca2
--- /dev/null
+++ b/example.env
@@ -0,0 +1,5 @@
+PERSIST_DIRECTORY=db
+LLAMA_EMBEDDINGS_MODEL=models/ggml-model-q4_0.bin
+MODEL_TYPE=GPT4All
+MODEL_PATH=models/ggml-gpt4all-j-v1.3-groovy.bin
+MODEL_N_CTX=1000
\ No newline at end of file
diff --git a/ingest.py b/ingest.py
index ac1921e..2a9a161 100644
--- a/ingest.py
+++ b/ingest.py
@@ -1,19 +1,29 @@
-from langchain.document_loaders import TextLoader
+import os
+from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import LlamaCppEmbeddings
-from sys import argv
from constants import PERSIST_DIRECTORY
from constants import CHROMA_SETTINGS
def main():
+ llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL')
+ persist_directory = os.environ.get('PERSIST_DIRECTORY')
+ model_n_ctx = os.environ.get('MODEL_N_CTX')
# Load document and split in chunks
- loader = TextLoader(argv[1], encoding="utf8")
+ for root, dirs, files in os.walk("source_documents"):
+ for file in files:
+ if file.endswith(".txt"):
+ loader = TextLoader(os.path.join(root, file), encoding="utf8")
+ elif file.endswith(".pdf"):
+ loader = PDFMinerLoader(os.path.join(root, file))
+ elif file.endswith(".csv"):
+ loader = CSVLoader(os.path.join(root, file))
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
texts = text_splitter.split_documents(documents)
# Create embeddings
- llama = LlamaCppEmbeddings(model_path="./models/ggml-model-q4_0.bin")
+ llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
# Create and store locally vectorstore
db = Chroma.from_documents(texts, llama, persist_directory=PERSIST_DIRECTORY, client_settings=CHROMA_SETTINGS)
db.persist()
diff --git a/privateGPT.py b/privateGPT.py
index a95613b..38fab48 100644
--- a/privateGPT.py
+++ b/privateGPT.py
@@ -2,18 +2,32 @@ from langchain.chains import RetrievalQA
from langchain.embeddings import LlamaCppEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
-from langchain.llms import GPT4All
-from constants import PERSIST_DIRECTORY
+from langchain.llms import GPT4All, LlamaCpp
+import os
+
+llama_embeddings_model = os.environ.get("LLAMA_EMBEDDINGS_MODEL")
+persist_directory = os.environ.get('PERSIST_DIRECTORY')
+
+model_type = os.environ.get('MODEL_TYPE')
+model_path = os.environ.get('MODEL_PATH')
+model_n_ctx = os.environ.get('MODEL_N_CTX')
+
from constants import CHROMA_SETTINGS
-def main():
- # Load stored vectorstore
- llama = LlamaCppEmbeddings(model_path="./models/ggml-model-q4_0.bin")
- db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=llama, client_settings=CHROMA_SETTINGS)
+def main():
+ llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
+ db = Chroma(persist_directory=persist_directory, embedding_function=llama, client_settings=CHROMA_SETTINGS)
retriever = db.as_retriever()
# Prepare the LLM
callbacks = [StreamingStdOutCallbackHandler()]
- llm = GPT4All(model='./models/ggml-gpt4all-j-v1.3-groovy.bin', backend='gptj', callbacks=callbacks, verbose=False)
+ match model_type:
+ case "LlamaCpp":
+ llm = LlamaCpp(model_path=model_path, n_ctx=model_n_ctx, callbacks=callbacks, verbose=False)
+ case "GPT4All":
+ llm = GPT4All(model=model_path, n_ctx=model_n_ctx, backend='gptj', callbacks=callbacks, verbose=False)
+ case _default:
+ print(f"Model {model_type} not supported!")
+ exit;
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
# Interactive questions and answers
while True: