smolagents/agents/text_to_speech.py

68 lines
2.4 KiB
Python

#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speecht5 import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor
from ..utils import is_datasets_available
from .tools import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class TextToSpeechTool(PipelineTool):
default_checkpoint = "microsoft/speecht5_tts"
description = (
"This is a tool that reads an English text out loud. It returns a waveform object containing the sound."
)
name = "text_to_speech"
pre_processor_class = SpeechT5Processor
model_class = SpeechT5ForTextToSpeech
post_processor_class = SpeechT5HifiGan
inputs = {"text": {"type": "string", "description": "The text to read out loud (in English)"}}
output_type = "audio"
def setup(self):
if self.post_processor is None:
self.post_processor = "microsoft/speecht5_hifigan"
super().setup()
def encode(self, text, speaker_embeddings=None):
inputs = self.pre_processor(text=text, return_tensors="pt", truncation=True)
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("Datasets needs to be installed if not passing speaker embeddings.")
embeddings_dataset = load_dataset(
"Matthijs/cmu-arctic-xvectors", split="validation", trust_remote_code=True
)
speaker_embeddings = torch.tensor(embeddings_dataset[7305]["xvector"]).unsqueeze(0)
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def forward(self, inputs):
with torch.no_grad():
return self.model.generate_speech(**inputs)
def decode(self, outputs):
with torch.no_grad():
return self.post_processor(outputs).cpu().detach()