smolagents/tests/test_agents.py

647 lines
22 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir
from smolagents.agents import (
AgentMaxStepsError,
CodeAgent,
ManagedAgent,
ToolCall,
ToolCallingAgent,
)
from smolagents.default_tools import PythonInterpreterTool
from smolagents.models import ChatMessage, ChatMessageToolCall, ChatMessageToolCallDefinition, TransformersModel
from smolagents.tools import tool
from smolagents.types import AgentImage, AgentText
from smolagents.utils import BASE_BUILTIN_MODULES
def get_new_path(suffix="") -> str:
directory = tempfile.mkdtemp()
return os.path.join(directory, str(uuid.uuid4()) + suffix)
class FakeToolCallModel:
def __call__(self, messages, tools_to_call_from=None, stop_sequences=None, grammar=None):
if len(messages) < 3:
return ChatMessage(
role="assistant",
content="",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallDefinition(
name="python_interpreter", arguments={"code": "2*3.6452"}
),
)
],
)
else:
return ChatMessage(
role="assistant",
content="",
tool_calls=[
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallDefinition(name="final_answer", arguments={"answer": "7.2904"}),
)
],
)
class FakeToolCallModelImage:
def __call__(self, messages, tools_to_call_from=None, stop_sequences=None, grammar=None):
if len(messages) < 3:
return ChatMessage(
role="assistant",
content="",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallDefinition(
name="fake_image_generation_tool",
arguments={"prompt": "An image of a cat"},
),
)
],
)
else:
return ChatMessage(
role="assistant",
content="",
tool_calls=[
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallDefinition(name="final_answer", arguments="image.png"),
)
],
)
class FakeToolCallModelVL:
def __call__(self, messages, tools_to_call_from=None, stop_sequences=None, grammar=None):
if len(messages) < 3:
return ChatMessage(
role="assistant",
content="",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallDefinition(
name="fake_image_understanding_tool",
arguments={
"prompt": "What is in this image?",
"image": "image.png",
},
),
)
],
)
else:
return ChatMessage(
role="assistant",
content="",
tool_calls=[
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallDefinition(name="final_answer", arguments="The image is a cat."),
)
],
)
def fake_code_model(messages, stop_sequences=None, grammar=None) -> str:
prompt = str(messages)
if "special_marker" not in prompt:
return ChatMessage(
role="assistant",
content="""
Thought: I should multiply 2 by 3.6452. special_marker
Code:
```py
result = 2**3.6452
```<end_code>
""",
)
else: # We're at step 2
return ChatMessage(
role="assistant",
content="""
Thought: I can now answer the initial question
Code:
```py
final_answer(7.2904)
```<end_code>
""",
)
def fake_code_model_error(messages, stop_sequences=None) -> str:
prompt = str(messages)
if "special_marker" not in prompt:
return ChatMessage(
role="assistant",
content="""
Thought: I should multiply 2 by 3.6452. special_marker
Code:
```py
def error_function():
raise ValueError("error")
error_function()
```<end_code>
""",
)
else: # We're at step 2
return ChatMessage(
role="assistant",
content="""
Thought: I faced an error in the previous step.
Code:
```py
final_answer("got an error")
```<end_code>
""",
)
def fake_code_model_syntax_error(messages, stop_sequences=None) -> str:
prompt = str(messages)
if "special_marker" not in prompt:
return ChatMessage(
role="assistant",
content="""
Thought: I should multiply 2 by 3.6452. special_marker
Code:
```py
a = 2
b = a * 2
print("Failing due to unexpected indent")
print("Ok, calculation done!")
```<end_code>
""",
)
else: # We're at step 2
return ChatMessage(
role="assistant",
content="""
Thought: I can now answer the initial question
Code:
```py
final_answer("got an error")
```<end_code>
""",
)
def fake_code_model_import(messages, stop_sequences=None) -> str:
return ChatMessage(
role="assistant",
content="""
Thought: I can answer the question
Code:
```py
import numpy as np
final_answer("got an error")
```<end_code>
""",
)
def fake_code_functiondef(messages, stop_sequences=None) -> str:
prompt = str(messages)
if "special_marker" not in prompt:
return ChatMessage(
role="assistant",
content="""
Thought: Let's define the function. special_marker
Code:
```py
import numpy as np
def moving_average(x, w):
return np.convolve(x, np.ones(w), 'valid') / w
```<end_code>
""",
)
else: # We're at step 2
return ChatMessage(
role="assistant",
content="""
Thought: I can now answer the initial question
Code:
```py
x, w = [0, 1, 2, 3, 4, 5], 2
res = moving_average(x, w)
final_answer(res)
```<end_code>
""",
)
def fake_code_model_single_step(messages, stop_sequences=None, grammar=None) -> str:
return ChatMessage(
role="assistant",
content="""
Thought: I should multiply 2 by 3.6452. special_marker
Code:
```py
result = python_interpreter(code="2*3.6452")
final_answer(result)
```
""",
)
def fake_code_model_no_return(messages, stop_sequences=None, grammar=None) -> str:
return ChatMessage(
role="assistant",
content="""
Thought: I should multiply 2 by 3.6452. special_marker
Code:
```py
result = python_interpreter(code="2*3.6452")
print(result)
```
""",
)
class AgentTests(unittest.TestCase):
def test_fake_single_step_code_agent(self):
agent = CodeAgent(tools=[PythonInterpreterTool()], model=fake_code_model_single_step)
output = agent.run("What is 2 multiplied by 3.6452?", single_step=True)
assert isinstance(output, str)
assert "7.2904" in output
def test_fake_toolcalling_agent(self):
agent = ToolCallingAgent(tools=[PythonInterpreterTool()], model=FakeToolCallModel())
output = agent.run("What is 2 multiplied by 3.6452?")
assert isinstance(output, str)
assert "7.2904" in output
assert agent.memory.steps[0].task == "What is 2 multiplied by 3.6452?"
assert "7.2904" in agent.memory.steps[1].observations
assert agent.memory.steps[2].model_output is None
def test_toolcalling_agent_handles_image_tool_outputs(self):
from PIL import Image
@tool
def fake_image_generation_tool(prompt: str) -> Image.Image:
"""Tool that generates an image.
Args:
prompt: The prompt
"""
return Image.open(Path(get_tests_dir("fixtures")) / "000000039769.png")
agent = ToolCallingAgent(tools=[fake_image_generation_tool], model=FakeToolCallModelImage())
output = agent.run("Make me an image.")
assert isinstance(output, AgentImage)
assert isinstance(agent.state["image.png"], Image.Image)
def test_toolcalling_agent_handles_image_inputs(self):
from PIL import Image
image = Image.open(Path(get_tests_dir("fixtures")) / "000000039769.png") # dummy input
@tool
def fake_image_understanding_tool(prompt: str, image: Image.Image) -> str:
"""Tool that creates a caption for an image.
Args:
prompt: The prompt
image: The image
"""
return "The image is a cat."
agent = ToolCallingAgent(tools=[fake_image_understanding_tool], model=FakeToolCallModelVL())
output = agent.run("Caption this image.", images=[image])
assert output == "The image is a cat."
def test_fake_code_agent(self):
agent = CodeAgent(tools=[PythonInterpreterTool()], model=fake_code_model)
output = agent.run("What is 2 multiplied by 3.6452?")
assert isinstance(output, float)
assert output == 7.2904
assert agent.memory.steps[0].task == "What is 2 multiplied by 3.6452?"
assert agent.memory.steps[2].tool_calls == [
ToolCall(name="python_interpreter", arguments="final_answer(7.2904)", id="call_2")
]
def test_additional_args_added_to_task(self):
agent = CodeAgent(tools=[], model=fake_code_model)
agent.run(
"What is 2 multiplied by 3.6452?",
additional_args={"instruction": "Remember this."},
)
assert "Remember this" in agent.task
assert "Remember this" in str(agent.input_messages)
def test_reset_conversations(self):
agent = CodeAgent(tools=[PythonInterpreterTool()], model=fake_code_model)
output = agent.run("What is 2 multiplied by 3.6452?", reset=True)
assert output == 7.2904
assert len(agent.memory.steps) == 3
output = agent.run("What is 2 multiplied by 3.6452?", reset=False)
assert output == 7.2904
assert len(agent.memory.steps) == 5
output = agent.run("What is 2 multiplied by 3.6452?", reset=True)
assert output == 7.2904
assert len(agent.memory.steps) == 3
def test_code_agent_code_errors_show_offending_line_and_error(self):
agent = CodeAgent(tools=[PythonInterpreterTool()], model=fake_code_model_error)
output = agent.run("What is 2 multiplied by 3.6452?")
assert isinstance(output, AgentText)
assert output == "got an error"
assert "Code execution failed at line 'error_function()'" in str(agent.memory.steps[1].error)
assert "ValueError" in str(agent.memory.steps)
def test_code_agent_syntax_error_show_offending_lines(self):
agent = CodeAgent(tools=[PythonInterpreterTool()], model=fake_code_model_syntax_error)
output = agent.run("What is 2 multiplied by 3.6452?")
assert isinstance(output, AgentText)
assert output == "got an error"
assert ' print("Failing due to unexpected indent")' in str(agent.memory.steps)
def test_setup_agent_with_empty_toolbox(self):
ToolCallingAgent(model=FakeToolCallModel(), tools=[])
def test_fails_max_steps(self):
agent = CodeAgent(
tools=[PythonInterpreterTool()],
model=fake_code_model_no_return, # use this callable because it never ends
max_steps=5,
)
answer = agent.run("What is 2 multiplied by 3.6452?")
assert len(agent.memory.steps) == 7
assert type(agent.memory.steps[-1].error) is AgentMaxStepsError
assert isinstance(answer, str)
def test_tool_descriptions_get_baked_in_system_prompt(self):
tool = PythonInterpreterTool()
tool.name = "fake_tool_name"
tool.description = "fake_tool_description"
agent = CodeAgent(tools=[tool], model=fake_code_model)
agent.run("Empty task")
assert tool.name in agent.system_prompt
assert tool.description in agent.system_prompt
def test_module_imports_get_baked_in_system_prompt(self):
agent = CodeAgent(tools=[], model=fake_code_model)
agent.run("Empty task")
for module in BASE_BUILTIN_MODULES:
assert module in agent.system_prompt
def test_init_agent_with_different_toolsets(self):
toolset_1 = []
agent = CodeAgent(tools=toolset_1, model=fake_code_model)
assert len(agent.tools) == 1 # when no tools are provided, only the final_answer tool is added by default
toolset_2 = [PythonInterpreterTool(), PythonInterpreterTool()]
agent = CodeAgent(tools=toolset_2, model=fake_code_model)
assert (
len(agent.tools) == 2
) # deduplication of tools, so only one python_interpreter tool is added in addition to final_answer
# check that python_interpreter base tool does not get added to CodeAgent
agent = CodeAgent(tools=[], model=fake_code_model, add_base_tools=True)
assert len(agent.tools) == 3 # added final_answer tool + search + visit_webpage
# check that python_interpreter base tool gets added to ToolCallingAgent
agent = ToolCallingAgent(tools=[], model=fake_code_model, add_base_tools=True)
assert len(agent.tools) == 4 # added final_answer tool + search + visit_webpage
def test_function_persistence_across_steps(self):
agent = CodeAgent(
tools=[],
model=fake_code_functiondef,
max_steps=2,
additional_authorized_imports=["numpy"],
)
res = agent.run("ok")
assert res[0] == 0.5
def test_init_managed_agent(self):
agent = CodeAgent(tools=[], model=fake_code_functiondef)
managed_agent = ManagedAgent(agent, name="managed_agent", description="Empty")
assert managed_agent.name == "managed_agent"
assert managed_agent.description == "Empty"
def test_agent_description_gets_correctly_inserted_in_system_prompt(self):
agent = CodeAgent(tools=[], model=fake_code_functiondef)
managed_agent = ManagedAgent(agent, name="managed_agent", description="Empty")
manager_agent = CodeAgent(
tools=[],
model=fake_code_functiondef,
managed_agents=[managed_agent],
)
assert "You can also give requests to team members." not in agent.system_prompt
print("ok1")
assert "{{managed_agents_descriptions}}" not in agent.system_prompt
assert "You can also give requests to team members." in manager_agent.system_prompt
def test_code_agent_missing_import_triggers_advice_in_error_log(self):
agent = CodeAgent(tools=[], model=fake_code_model_import)
with agent.logger.console.capture() as capture:
agent.run("Count to 3")
str_output = capture.get()
assert "`additional_authorized_imports`" in str_output.replace("\n", "")
def test_multiagents(self):
class FakeModelMultiagentsManagerAgent:
def __call__(
self,
messages,
stop_sequences=None,
grammar=None,
tools_to_call_from=None,
):
if tools_to_call_from is not None:
if len(messages) < 3:
return ChatMessage(
role="assistant",
content="",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallDefinition(
name="search_agent",
arguments="Who is the current US president?",
),
)
],
)
else:
assert "Report on the current US president" in str(messages)
return ChatMessage(
role="assistant",
content="",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallDefinition(
name="final_answer", arguments="Final report."
),
)
],
)
else:
if len(messages) < 3:
return ChatMessage(
role="assistant",
content="""
Thought: Let's call our search agent.
Code:
```py
result = search_agent("Who is the current US president?")
```<end_code>
""",
)
else:
assert "Report on the current US president" in str(messages)
return ChatMessage(
role="assistant",
content="""
Thought: Let's return the report.
Code:
```py
final_answer("Final report.")
```<end_code>
""",
)
manager_model = FakeModelMultiagentsManagerAgent()
class FakeModelMultiagentsManagedAgent:
def __call__(
self,
messages,
tools_to_call_from=None,
stop_sequences=None,
grammar=None,
):
return ChatMessage(
role="assistant",
content="",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallDefinition(
name="final_answer",
arguments="Report on the current US president",
),
)
],
)
managed_model = FakeModelMultiagentsManagedAgent()
web_agent = ToolCallingAgent(
tools=[],
model=managed_model,
max_steps=10,
)
managed_web_agent = ManagedAgent(
agent=web_agent,
name="search_agent",
description="Runs web searches for you. Give it your request as an argument. Make the request as detailed as needed, you can ask for thorough reports",
)
manager_code_agent = CodeAgent(
tools=[],
model=manager_model,
managed_agents=[managed_web_agent],
additional_authorized_imports=["time", "numpy", "pandas"],
)
report = manager_code_agent.run("Fake question.")
assert report == "Final report."
manager_toolcalling_agent = ToolCallingAgent(
tools=[],
model=manager_model,
managed_agents=[managed_web_agent],
)
report = manager_toolcalling_agent.run("Fake question.")
assert report == "Final report."
def test_code_nontrivial_final_answer_works(self):
def fake_code_model_final_answer(messages, stop_sequences=None, grammar=None):
return ChatMessage(
role="assistant",
content="""Code:
```py
def nested_answer():
final_answer("Correct!")
nested_answer()
```<end_code>""",
)
agent = CodeAgent(tools=[], model=fake_code_model_final_answer)
output = agent.run("Count to 3")
assert output == "Correct!"
def test_transformers_toolcalling_agent(self):
@tool
def get_weather(location: str, celsius: bool = False) -> str:
"""
Get weather in the next days at given location.
Secretly this tool does not care about the location, it hates the weather everywhere.
Args:
location: the location
celsius: the temperature type
"""
return "The weather is UNGODLY with torrential rains and temperatures below -10°C"
model = TransformersModel(
model_id="HuggingFaceTB/SmolLM2-360M-Instruct",
max_new_tokens=100,
device_map="auto",
do_sample=False,
)
agent = ToolCallingAgent(model=model, tools=[get_weather], max_steps=1)
agent.run("What's the weather in Paris?")
assert agent.memory.steps[0].task == "What's the weather in Paris?"
assert agent.memory.steps[1].tool_calls[0].name == "get_weather"
step_memory_dict = agent.memory.get_succinct_steps()[1]
assert step_memory_dict["model_output_message"].tool_calls[0].function.name == "get_weather"
assert step_memory_dict["model_output_message"].raw["completion_kwargs"]["max_new_tokens"] == 100
assert "model_input_messages" in agent.memory.get_full_steps()[1]