Make import time faster (optional deps + delay imports) (#253)
* adapt docs * optional in pyproject.toml * get rid of some transformers imports * optional transformers in models.py * gradio, transformers, litellm * small refacto AgentType * merge conflicts * mouaif * fix tests * AgentText no longer a str * Add back AgentType as str/Image * fixed for good
This commit is contained in:
		
							parent
							
								
									a2ca95107f
								
							
						
					
					
						commit
						d19ebc7a48
					
				|  | @ -55,6 +55,7 @@ agent.run( | |||
| <hfoption id="Local Transformers Model"> | ||||
| 
 | ||||
| ```python | ||||
| # !pip install smolagents[transformers] | ||||
| from smolagents import CodeAgent, TransformersModel | ||||
| 
 | ||||
| model_id = "meta-llama/Llama-3.2-3B-Instruct" | ||||
|  | @ -72,6 +73,7 @@ agent.run( | |||
| To use `LiteLLMModel`, you need to set the environment variable `ANTHROPIC_API_KEY` or `OPENAI_API_KEY`, or pass `api_key` variable upon initialization. | ||||
| 
 | ||||
| ```python | ||||
| # !pip install smolagents[litellm] | ||||
| from smolagents import CodeAgent, LiteLLMModel | ||||
| 
 | ||||
| model = LiteLLMModel(model_id="anthropic/claude-3-5-sonnet-latest", api_key="YOUR_ANTHROPIC_API_KEY") # Could use 'gpt-4o' | ||||
|  | @ -85,6 +87,7 @@ agent.run( | |||
| <hfoption id="Ollama"> | ||||
| 
 | ||||
| ```python | ||||
| # !pip install smolagents[litellm] | ||||
| from smolagents import CodeAgent, LiteLLMModel | ||||
| 
 | ||||
| model = LiteLLMModel( | ||||
|  |  | |||
|  | @ -55,6 +55,9 @@ Both require arguments `model` and list of tools `tools` at initialization. | |||
| 
 | ||||
| ### GradioUI | ||||
| 
 | ||||
| > [!TIP] | ||||
| > You must have `gradio` installed to use the UI. Please run `pip install smolagents[gradio]` if it's not the case. | ||||
| 
 | ||||
| [[autodoc]] GradioUI | ||||
| 
 | ||||
| ## Models | ||||
|  | @ -99,6 +102,9 @@ print(model([{"role": "user", "content": "Ok!"}], stop_sequences=["great"])) | |||
| >>> What a | ||||
| ``` | ||||
| 
 | ||||
| > [!TIP] | ||||
| > You must have `transformers` and `torch` installed on your machine. Please run `pip install smolagents[transformers]` if it's not the case. | ||||
| 
 | ||||
| [[autodoc]] TransformersModel | ||||
| 
 | ||||
| ### HfApiModel | ||||
|  |  | |||
|  | @ -61,6 +61,7 @@ agent.run( | |||
| <hfoption id="本地Transformers模型"> | ||||
| 
 | ||||
| ```python | ||||
| # !pip install smolagents[transformers] | ||||
| from smolagents import CodeAgent, TransformersModel | ||||
| 
 | ||||
| model_id = "meta-llama/Llama-3.2-3B-Instruct" | ||||
|  | @ -78,6 +79,7 @@ agent.run( | |||
| 要使用 `LiteLLMModel`,您需要设置环境变量 `ANTHROPIC_API_KEY` 或 `OPENAI_API_KEY`,或者在初始化时传递 `api_key` 变量。 | ||||
| 
 | ||||
| ```python | ||||
| # !pip install smolagents[litellm] | ||||
| from smolagents import CodeAgent, LiteLLMModel | ||||
| 
 | ||||
| model = LiteLLMModel(model_id="anthropic/claude-3-5-sonnet-latest", api_key="YOUR_ANTHROPIC_API_KEY") # 也可以使用 'gpt-4o' | ||||
|  | @ -91,6 +93,7 @@ agent.run( | |||
| <hfoption id="Ollama"> | ||||
| 
 | ||||
| ```python | ||||
| # !pip install smolagents[litellm] | ||||
| from smolagents import CodeAgent, LiteLLMModel | ||||
| 
 | ||||
| model = LiteLLMModel( | ||||
|  |  | |||
|  | @ -55,6 +55,9 @@ Both require arguments `model` and list of tools `tools` at initialization. | |||
| 
 | ||||
| ### GradioUI | ||||
| 
 | ||||
| > [!TIP] | ||||
| > You must have `gradio` installed to use the UI. Please run `pip install smolagents[gradio]` if it's not the case. | ||||
| 
 | ||||
| [[autodoc]] GradioUI | ||||
| 
 | ||||
| ## Models | ||||
|  | @ -99,6 +102,9 @@ print(model([{"role": "user", "content": "Ok!"}], stop_sequences=["great"])) | |||
| >>> What a | ||||
| ``` | ||||
| 
 | ||||
| > [!TIP] | ||||
| > You must have `transformers` and `torch` installed on your machine. Please run `pip install smolagents[transformers]` if it's not the case. | ||||
| 
 | ||||
| [[autodoc]] TransformersModel | ||||
| 
 | ||||
| ### HfApiModel | ||||
|  |  | |||
|  | @ -12,14 +12,12 @@ authors = [ | |||
| readme = "README.md" | ||||
| requires-python = ">=3.10" | ||||
| dependencies = [ | ||||
|   "transformers>=4.0.0", | ||||
|   "requests>=2.32.3", | ||||
|   "rich>=13.9.4", | ||||
|   "pandas>=2.2.3", | ||||
|   "jinja2>=3.1.4", | ||||
|   "pillow>=11.0.0", | ||||
|   "markdownify>=0.14.1", | ||||
|   "gradio>=5.8.0", | ||||
|   "duckduckgo-search>=6.3.7", | ||||
|   "python-dotenv>=1.0.1", | ||||
|   "e2b-code-interpreter>=1.0.3", | ||||
|  | @ -27,12 +25,20 @@ dependencies = [ | |||
| ] | ||||
| 
 | ||||
| [project.optional-dependencies] | ||||
| audio = [ | ||||
|   "soundfile", | ||||
| ] | ||||
| torch = [ | ||||
|   "torch", | ||||
| ] | ||||
| audio = [ | ||||
|   "soundfile", | ||||
|   "smolagents[torch]", | ||||
| ] | ||||
| transformers = [ | ||||
|   "accelerate", | ||||
|   "transformers>=4.0.0", | ||||
|   "smolagents[torch]", | ||||
| ] | ||||
| gradio = [ | ||||
|   "gradio>=5.8.0", | ||||
| ] | ||||
| litellm = [ | ||||
|   "litellm>=1.55.10", | ||||
|  | @ -47,9 +53,12 @@ openai = [ | |||
| quality = [ | ||||
|   "ruff>=0.9.0", | ||||
| ] | ||||
| all = [ | ||||
|   "smolagents[accelerate,audio,gradio,litellm,mcp,openai,transformers]", | ||||
| ] | ||||
| test = [ | ||||
|   "pytest>=8.1.0", | ||||
|   "smolagents[audio,litellm,mcp,openai,torch]", | ||||
|   "smolagents[all]", | ||||
| ] | ||||
| dev = [ | ||||
|   "smolagents[quality,test]", | ||||
|  |  | |||
|  | @ -16,36 +16,14 @@ | |||
| # limitations under the License. | ||||
| __version__ = "1.5.0.dev" | ||||
| 
 | ||||
| from typing import TYPE_CHECKING | ||||
| 
 | ||||
| from transformers.utils import _LazyModule | ||||
| from transformers.utils.import_utils import define_import_structure | ||||
| 
 | ||||
| 
 | ||||
| if TYPE_CHECKING: | ||||
|     from .agents import * | ||||
|     from .default_tools import * | ||||
|     from .e2b_executor import * | ||||
|     from .gradio_ui import * | ||||
|     from .local_python_executor import * | ||||
|     from .models import * | ||||
|     from .monitoring import * | ||||
|     from .prompts import * | ||||
|     from .tools import * | ||||
|     from .types import * | ||||
|     from .utils import * | ||||
| 
 | ||||
| 
 | ||||
| else: | ||||
|     import sys | ||||
| 
 | ||||
|     _file = globals()["__file__"] | ||||
|     import_structure = define_import_structure(_file) | ||||
|     import_structure[""] = {"__version__": __version__} | ||||
|     sys.modules[__name__] = _LazyModule( | ||||
|         __name__, | ||||
|         _file, | ||||
|         import_structure, | ||||
|         module_spec=__spec__, | ||||
|         extra_objects={"__version__": __version__}, | ||||
|     ) | ||||
| from .agents import * | ||||
| from .default_tools import * | ||||
| from .e2b_executor import * | ||||
| from .gradio_ui import * | ||||
| from .local_python_executor import * | ||||
| from .models import * | ||||
| from .monitoring import * | ||||
| from .prompts import * | ||||
| from .tools import * | ||||
| from .types import * | ||||
| from .utils import * | ||||
|  |  | |||
|  | @ -0,0 +1,388 @@ | |||
| #!/usr/bin/env python | ||||
| # coding=utf-8 | ||||
| 
 | ||||
| # Copyright 2025 The HuggingFace Inc. team. All rights reserved. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| # | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
| # | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| """This module contains utilities exclusively taken from `transformers` repository. | ||||
| 
 | ||||
| Since they are not specific to `transformers` and that `transformers` is an heavy dependencies, those helpers have | ||||
| been duplicated. | ||||
| 
 | ||||
| TODO: move them to `huggingface_hub` to avoid code duplication. | ||||
| """ | ||||
| 
 | ||||
| import inspect | ||||
| import json | ||||
| import os | ||||
| import re | ||||
| import types | ||||
| from typing import ( | ||||
|     Any, | ||||
|     Callable, | ||||
|     Dict, | ||||
|     List, | ||||
|     Optional, | ||||
|     Tuple, | ||||
|     Union, | ||||
|     get_args, | ||||
|     get_origin, | ||||
|     get_type_hints, | ||||
| ) | ||||
| 
 | ||||
| from huggingface_hub.utils import is_torch_available | ||||
| 
 | ||||
| from .utils import _is_pillow_available | ||||
| 
 | ||||
| 
 | ||||
| def get_imports(filename: Union[str, os.PathLike]) -> List[str]: | ||||
|     """ | ||||
|     Extracts all the libraries (not relative imports this time) that are imported in a file. | ||||
| 
 | ||||
|     Args: | ||||
|         filename (`str` or `os.PathLike`): The module file to inspect. | ||||
| 
 | ||||
|     Returns: | ||||
|         `List[str]`: The list of all packages required to use the input module. | ||||
|     """ | ||||
|     with open(filename, "r", encoding="utf-8") as f: | ||||
|         content = f.read() | ||||
| 
 | ||||
|     # filter out try/except block so in custom code we can have try/except imports | ||||
|     content = re.sub(r"\s*try\s*:.*?except.*?:", "", content, flags=re.DOTALL) | ||||
| 
 | ||||
|     # filter out imports under is_flash_attn_2_available block for avoid import issues in cpu only environment | ||||
|     content = re.sub( | ||||
|         r"if is_flash_attn[a-zA-Z0-9_]+available\(\):\s*(from flash_attn\s*.*\s*)+", | ||||
|         "", | ||||
|         content, | ||||
|         flags=re.MULTILINE, | ||||
|     ) | ||||
| 
 | ||||
|     # Imports of the form `import xxx` | ||||
|     imports = re.findall(r"^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE) | ||||
|     # Imports of the form `from xxx import yyy` | ||||
|     imports += re.findall(r"^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE) | ||||
|     # Only keep the top-level module | ||||
|     imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")] | ||||
|     return list(set(imports)) | ||||
| 
 | ||||
| 
 | ||||
| class TypeHintParsingException(Exception): | ||||
|     """Exception raised for errors in parsing type hints to generate JSON schemas""" | ||||
| 
 | ||||
| 
 | ||||
| class DocstringParsingException(Exception): | ||||
|     """Exception raised for errors in parsing docstrings to generate JSON schemas""" | ||||
| 
 | ||||
| 
 | ||||
| def get_json_schema(func: Callable) -> Dict: | ||||
|     """ | ||||
|     This function generates a JSON schema for a given function, based on its docstring and type hints. This is | ||||
|     mostly used for passing lists of tools to a chat template. The JSON schema contains the name and description of | ||||
|     the function, as well as the names, types and descriptions for each of its arguments. `get_json_schema()` requires | ||||
|     that the function has a docstring, and that each argument has a description in the docstring, in the standard | ||||
|     Google docstring format shown below. It also requires that all the function arguments have a valid Python type hint. | ||||
| 
 | ||||
|     Although it is not required, a `Returns` block can also be added, which will be included in the schema. This is | ||||
|     optional because most chat templates ignore the return value of the function. | ||||
| 
 | ||||
|     Args: | ||||
|         func: The function to generate a JSON schema for. | ||||
| 
 | ||||
|     Returns: | ||||
|         A dictionary containing the JSON schema for the function. | ||||
| 
 | ||||
|     Examples: | ||||
|     ```python | ||||
|     >>> def multiply(x: float, y: float): | ||||
|     >>>    ''' | ||||
|     >>>    A function that multiplies two numbers | ||||
|     >>> | ||||
|     >>>    Args: | ||||
|     >>>        x: The first number to multiply | ||||
|     >>>        y: The second number to multiply | ||||
|     >>>    ''' | ||||
|     >>>    return x * y | ||||
|     >>> | ||||
|     >>> print(get_json_schema(multiply)) | ||||
|     { | ||||
|         "name": "multiply", | ||||
|         "description": "A function that multiplies two numbers", | ||||
|         "parameters": { | ||||
|             "type": "object", | ||||
|             "properties": { | ||||
|                 "x": {"type": "number", "description": "The first number to multiply"}, | ||||
|                 "y": {"type": "number", "description": "The second number to multiply"} | ||||
|             }, | ||||
|             "required": ["x", "y"] | ||||
|         } | ||||
|     } | ||||
|     ``` | ||||
| 
 | ||||
|     The general use for these schemas is that they are used to generate tool descriptions for chat templates that | ||||
|     support them, like so: | ||||
| 
 | ||||
|     ```python | ||||
|     >>> from transformers import AutoTokenizer | ||||
|     >>> from transformers.utils import get_json_schema | ||||
|     >>> | ||||
|     >>> def multiply(x: float, y: float): | ||||
|     >>>    ''' | ||||
|     >>>    A function that multiplies two numbers | ||||
|     >>> | ||||
|     >>>    Args: | ||||
|     >>>        x: The first number to multiply | ||||
|     >>>        y: The second number to multiply | ||||
|     >>>    return x * y | ||||
|     >>>    ''' | ||||
|     >>> | ||||
|     >>> multiply_schema = get_json_schema(multiply) | ||||
|     >>> tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01") | ||||
|     >>> messages = [{"role": "user", "content": "What is 179 x 4571?"}] | ||||
|     >>> formatted_chat = tokenizer.apply_chat_template( | ||||
|     >>>     messages, | ||||
|     >>>     tools=[multiply_schema], | ||||
|     >>>     chat_template="tool_use", | ||||
|     >>>     return_dict=True, | ||||
|     >>>     return_tensors="pt", | ||||
|     >>>     add_generation_prompt=True | ||||
|     >>> ) | ||||
|     >>> # The formatted chat can now be passed to model.generate() | ||||
|     ``` | ||||
| 
 | ||||
|     Each argument description can also have an optional `(choices: ...)` block at the end, such as | ||||
|     `(choices: ["tea", "coffee"])`, which will be parsed into an `enum` field in the schema. Note that this will | ||||
|     only be parsed correctly if it is at the end of the line: | ||||
| 
 | ||||
|     ```python | ||||
|     >>> def drink_beverage(beverage: str): | ||||
|     >>>    ''' | ||||
|     >>>    A function that drinks a beverage | ||||
|     >>> | ||||
|     >>>    Args: | ||||
|     >>>        beverage: The beverage to drink (choices: ["tea", "coffee"]) | ||||
|     >>>    ''' | ||||
|     >>>    pass | ||||
|     >>> | ||||
|     >>> print(get_json_schema(drink_beverage)) | ||||
|     ``` | ||||
|     { | ||||
|         'name': 'drink_beverage', | ||||
|         'description': 'A function that drinks a beverage', | ||||
|         'parameters': { | ||||
|             'type': 'object', | ||||
|             'properties': { | ||||
|                 'beverage': { | ||||
|                     'type': 'string', | ||||
|                     'enum': ['tea', 'coffee'], | ||||
|                     'description': 'The beverage to drink' | ||||
|                     } | ||||
|                 }, | ||||
|             'required': ['beverage'] | ||||
|         } | ||||
|     } | ||||
|     """ | ||||
|     doc = inspect.getdoc(func) | ||||
|     if not doc: | ||||
|         raise DocstringParsingException( | ||||
|             f"Cannot generate JSON schema for {func.__name__} because it has no docstring!" | ||||
|         ) | ||||
|     doc = doc.strip() | ||||
|     main_doc, param_descriptions, return_doc = _parse_google_format_docstring(doc) | ||||
| 
 | ||||
|     json_schema = _convert_type_hints_to_json_schema(func) | ||||
|     if (return_dict := json_schema["properties"].pop("return", None)) is not None: | ||||
|         if return_doc is not None:  # We allow a missing return docstring since most templates ignore it | ||||
|             return_dict["description"] = return_doc | ||||
|     for arg, schema in json_schema["properties"].items(): | ||||
|         if arg not in param_descriptions: | ||||
|             raise DocstringParsingException( | ||||
|                 f"Cannot generate JSON schema for {func.__name__} because the docstring has no description for the argument '{arg}'" | ||||
|             ) | ||||
|         desc = param_descriptions[arg] | ||||
|         enum_choices = re.search(r"\(choices:\s*(.*?)\)\s*$", desc, flags=re.IGNORECASE) | ||||
|         if enum_choices: | ||||
|             schema["enum"] = [c.strip() for c in json.loads(enum_choices.group(1))] | ||||
|             desc = enum_choices.string[: enum_choices.start()].strip() | ||||
|         schema["description"] = desc | ||||
| 
 | ||||
|     output = {"name": func.__name__, "description": main_doc, "parameters": json_schema} | ||||
|     if return_dict is not None: | ||||
|         output["return"] = return_dict | ||||
|     return {"type": "function", "function": output} | ||||
| 
 | ||||
| 
 | ||||
| # Extracts the initial segment of the docstring, containing the function description | ||||
| description_re = re.compile(r"^(.*?)[\n\s]*(Args:|Returns:|Raises:|\Z)", re.DOTALL) | ||||
| # Extracts the Args: block from the docstring | ||||
| args_re = re.compile(r"\n\s*Args:\n\s*(.*?)[\n\s]*(Returns:|Raises:|\Z)", re.DOTALL) | ||||
| # Splits the Args: block into individual arguments | ||||
| args_split_re = re.compile( | ||||
|     r""" | ||||
| (?:^|\n)  # Match the start of the args block, or a newline | ||||
| \s*(\w+):\s*  # Capture the argument name and strip spacing | ||||
| (.*?)\s*  # Capture the argument description, which can span multiple lines, and strip trailing spacing | ||||
| (?=\n\s*\w+:|\Z)  # Stop when you hit the next argument or the end of the block | ||||
| """, | ||||
|     re.DOTALL | re.VERBOSE, | ||||
| ) | ||||
| # Extracts the Returns: block from the docstring, if present. Note that most chat templates ignore the return type/doc! | ||||
| returns_re = re.compile(r"\n\s*Returns:\n\s*(.*?)[\n\s]*(Raises:|\Z)", re.DOTALL) | ||||
| 
 | ||||
| 
 | ||||
| def _parse_google_format_docstring( | ||||
|     docstring: str, | ||||
| ) -> Tuple[Optional[str], Optional[Dict], Optional[str]]: | ||||
|     """ | ||||
|     Parses a Google-style docstring to extract the function description, | ||||
|     argument descriptions, and return description. | ||||
| 
 | ||||
|     Args: | ||||
|         docstring (str): The docstring to parse. | ||||
| 
 | ||||
|     Returns: | ||||
|         The function description, arguments, and return description. | ||||
|     """ | ||||
| 
 | ||||
|     # Extract the sections | ||||
|     description_match = description_re.search(docstring) | ||||
|     args_match = args_re.search(docstring) | ||||
|     returns_match = returns_re.search(docstring) | ||||
| 
 | ||||
|     # Clean and store the sections | ||||
|     description = description_match.group(1).strip() if description_match else None | ||||
|     docstring_args = args_match.group(1).strip() if args_match else None | ||||
|     returns = returns_match.group(1).strip() if returns_match else None | ||||
| 
 | ||||
|     # Parsing the arguments into a dictionary | ||||
|     if docstring_args is not None: | ||||
|         docstring_args = "\n".join([line for line in docstring_args.split("\n") if line.strip()])  # Remove blank lines | ||||
|         matches = args_split_re.findall(docstring_args) | ||||
|         args_dict = {match[0]: re.sub(r"\s*\n+\s*", " ", match[1].strip()) for match in matches} | ||||
|     else: | ||||
|         args_dict = {} | ||||
| 
 | ||||
|     return description, args_dict, returns | ||||
| 
 | ||||
| 
 | ||||
| def _convert_type_hints_to_json_schema(func: Callable) -> Dict: | ||||
|     type_hints = get_type_hints(func) | ||||
|     signature = inspect.signature(func) | ||||
|     required = [] | ||||
|     for param_name, param in signature.parameters.items(): | ||||
|         if param.annotation == inspect.Parameter.empty: | ||||
|             raise TypeHintParsingException(f"Argument {param.name} is missing a type hint in function {func.__name__}") | ||||
|         if param.default == inspect.Parameter.empty: | ||||
|             required.append(param_name) | ||||
| 
 | ||||
|     properties = {} | ||||
|     for param_name, param_type in type_hints.items(): | ||||
|         properties[param_name] = _parse_type_hint(param_type) | ||||
| 
 | ||||
|     schema = {"type": "object", "properties": properties} | ||||
|     if required: | ||||
|         schema["required"] = required | ||||
| 
 | ||||
|     return schema | ||||
| 
 | ||||
| 
 | ||||
| def _parse_type_hint(hint: str) -> Dict: | ||||
|     origin = get_origin(hint) | ||||
|     args = get_args(hint) | ||||
| 
 | ||||
|     if origin is None: | ||||
|         try: | ||||
|             return _get_json_schema_type(hint) | ||||
|         except KeyError: | ||||
|             raise TypeHintParsingException( | ||||
|                 "Couldn't parse this type hint, likely due to a custom class or object: ", | ||||
|                 hint, | ||||
|             ) | ||||
| 
 | ||||
|     elif origin is Union or (hasattr(types, "UnionType") and origin is types.UnionType): | ||||
|         # Recurse into each of the subtypes in the Union, except None, which is handled separately at the end | ||||
|         subtypes = [_parse_type_hint(t) for t in args if t is not type(None)] | ||||
|         if len(subtypes) == 1: | ||||
|             # A single non-null type can be expressed directly | ||||
|             return_dict = subtypes[0] | ||||
|         elif all(isinstance(subtype["type"], str) for subtype in subtypes): | ||||
|             # A union of basic types can be expressed as a list in the schema | ||||
|             return_dict = {"type": sorted([subtype["type"] for subtype in subtypes])} | ||||
|         else: | ||||
|             # A union of more complex types requires "anyOf" | ||||
|             return_dict = {"anyOf": subtypes} | ||||
|         if type(None) in args: | ||||
|             return_dict["nullable"] = True | ||||
|         return return_dict | ||||
| 
 | ||||
|     elif origin is list: | ||||
|         if not args: | ||||
|             return {"type": "array"} | ||||
|         else: | ||||
|             # Lists can only have a single type argument, so recurse into it | ||||
|             return {"type": "array", "items": _parse_type_hint(args[0])} | ||||
| 
 | ||||
|     elif origin is tuple: | ||||
|         if not args: | ||||
|             return {"type": "array"} | ||||
|         if len(args) == 1: | ||||
|             raise TypeHintParsingException( | ||||
|                 f"The type hint {str(hint).replace('typing.', '')} is a Tuple with a single element, which " | ||||
|                 "we do not automatically convert to JSON schema as it is rarely necessary. If this input can contain " | ||||
|                 "more than one element, we recommend " | ||||
|                 "using a List[] type instead, or if it really is a single element, remove the Tuple[] wrapper and just " | ||||
|                 "pass the element directly." | ||||
|             ) | ||||
|         if ... in args: | ||||
|             raise TypeHintParsingException( | ||||
|                 "Conversion of '...' is not supported in Tuple type hints. " | ||||
|                 "Use List[] types for variable-length" | ||||
|                 " inputs instead." | ||||
|             ) | ||||
|         return {"type": "array", "prefixItems": [_parse_type_hint(t) for t in args]} | ||||
| 
 | ||||
|     elif origin is dict: | ||||
|         # The JSON equivalent to a dict is 'object', which mandates that all keys are strings | ||||
|         # However, we can specify the type of the dict values with "additionalProperties" | ||||
|         out = {"type": "object"} | ||||
|         if len(args) == 2: | ||||
|             out["additionalProperties"] = _parse_type_hint(args[1]) | ||||
|         return out | ||||
| 
 | ||||
|     raise TypeHintParsingException("Couldn't parse this type hint, likely due to a custom class or object: ", hint) | ||||
| 
 | ||||
| 
 | ||||
| _BASE_TYPE_MAPPING = { | ||||
|     int: {"type": "integer"}, | ||||
|     float: {"type": "number"}, | ||||
|     str: {"type": "string"}, | ||||
|     bool: {"type": "boolean"}, | ||||
|     Any: {}, | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| def _get_json_schema_type(param_type: str) -> Dict[str, str]: | ||||
|     if param_type in _BASE_TYPE_MAPPING: | ||||
|         return _BASE_TYPE_MAPPING[param_type] | ||||
|     if str(param_type) == "Image" and _is_pillow_available(): | ||||
|         from PIL.Image import Image | ||||
| 
 | ||||
|         if param_type == Image: | ||||
|             return {"type": "image"} | ||||
|     if str(param_type) == "Tensor" and is_torch_available(): | ||||
|         from torch import Tensor | ||||
| 
 | ||||
|         if param_type == Tensor: | ||||
|             return {"type": "audio"} | ||||
|     return {"type": "object"} | ||||
|  | @ -14,33 +14,19 @@ | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| import json | ||||
| import re | ||||
| from dataclasses import dataclass | ||||
| from typing import Dict, Optional | ||||
| 
 | ||||
| from huggingface_hub import hf_hub_download, list_spaces | ||||
| from transformers.utils import is_offline_mode, is_torch_available | ||||
| 
 | ||||
| from .local_python_executor import ( | ||||
|     BASE_BUILTIN_MODULES, | ||||
|     BASE_PYTHON_TOOLS, | ||||
|     evaluate_python_code, | ||||
| ) | ||||
| from .tools import TOOL_CONFIG_FILE, PipelineTool, Tool | ||||
| from .tools import PipelineTool, Tool | ||||
| from .types import AgentAudio | ||||
| 
 | ||||
| 
 | ||||
| if is_torch_available(): | ||||
|     from transformers.models.whisper import ( | ||||
|         WhisperForConditionalGeneration, | ||||
|         WhisperProcessor, | ||||
|     ) | ||||
| else: | ||||
|     WhisperForConditionalGeneration = object | ||||
|     WhisperProcessor = object | ||||
| 
 | ||||
| 
 | ||||
| @dataclass | ||||
| class PreTool: | ||||
|     name: str | ||||
|  | @ -51,31 +37,6 @@ class PreTool: | |||
|     repo_id: str | ||||
| 
 | ||||
| 
 | ||||
| def get_remote_tools(logger, organization="huggingface-tools"): | ||||
|     if is_offline_mode(): | ||||
|         logger.info("You are in offline mode, so remote tools are not available.") | ||||
|         return {} | ||||
| 
 | ||||
|     spaces = list_spaces(author=organization) | ||||
|     tools = {} | ||||
|     for space_info in spaces: | ||||
|         repo_id = space_info.id | ||||
|         resolved_config_file = hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space") | ||||
|         with open(resolved_config_file, encoding="utf-8") as reader: | ||||
|             config = json.load(reader) | ||||
|         task = repo_id.split("/")[-1] | ||||
|         tools[config["name"]] = PreTool( | ||||
|             task=task, | ||||
|             description=config["description"], | ||||
|             repo_id=repo_id, | ||||
|             name=task, | ||||
|             inputs=config["inputs"], | ||||
|             output_type=config["output_type"], | ||||
|         ) | ||||
| 
 | ||||
|     return tools | ||||
| 
 | ||||
| 
 | ||||
| class PythonInterpreterTool(Tool): | ||||
|     name = "python_interpreter" | ||||
|     description = "This is a tool that evaluates python code. It can be used to perform calculations." | ||||
|  | @ -150,10 +111,10 @@ class DuckDuckGoSearchTool(Tool): | |||
|         self.max_results = max_results | ||||
|         try: | ||||
|             from duckduckgo_search import DDGS | ||||
|         except ImportError: | ||||
|         except ImportError as e: | ||||
|             raise ImportError( | ||||
|                 "You must install package `duckduckgo_search` to run this tool: for instance run `pip install duckduckgo-search`." | ||||
|             ) | ||||
|             ) from e | ||||
|         self.ddgs = DDGS() | ||||
| 
 | ||||
|     def forward(self, query: str) -> str: | ||||
|  | @ -259,10 +220,10 @@ class VisitWebpageTool(Tool): | |||
|             from requests.exceptions import RequestException | ||||
| 
 | ||||
|             from smolagents.utils import truncate_content | ||||
|         except ImportError: | ||||
|         except ImportError as e: | ||||
|             raise ImportError( | ||||
|                 "You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`." | ||||
|             ) | ||||
|             ) from e | ||||
|         try: | ||||
|             # Send a GET request to the URL | ||||
|             response = requests.get(url) | ||||
|  | @ -286,9 +247,6 @@ class SpeechToTextTool(PipelineTool): | |||
|     default_checkpoint = "openai/whisper-large-v3-turbo" | ||||
|     description = "This is a tool that transcribes an audio into text. It returns the transcribed text." | ||||
|     name = "transcriber" | ||||
|     pre_processor_class = WhisperProcessor | ||||
|     model_class = WhisperForConditionalGeneration | ||||
| 
 | ||||
|     inputs = { | ||||
|         "audio": { | ||||
|             "type": "audio", | ||||
|  | @ -297,6 +255,18 @@ class SpeechToTextTool(PipelineTool): | |||
|     } | ||||
|     output_type = "string" | ||||
| 
 | ||||
|     def __new__(cls): | ||||
|         from transformers.models.whisper import ( | ||||
|             WhisperForConditionalGeneration, | ||||
|             WhisperProcessor, | ||||
|         ) | ||||
| 
 | ||||
|         if not hasattr(cls, "pre_processor_class"): | ||||
|             cls.pre_processor_class = WhisperProcessor | ||||
|         if not hasattr(cls, "model_class"): | ||||
|             cls.model_class = WhisperForConditionalGeneration | ||||
|         return super().__new__() | ||||
| 
 | ||||
|     def encode(self, audio): | ||||
|         audio = AgentAudio(audio).to_raw() | ||||
|         return self.pre_processor(audio, return_tensors="pt") | ||||
|  |  | |||
|  | @ -19,14 +19,15 @@ import re | |||
| import shutil | ||||
| from typing import Optional | ||||
| 
 | ||||
| import gradio as gr | ||||
| 
 | ||||
| from .agents import ActionStep, AgentStepLog, MultiStepAgent | ||||
| from .types import AgentAudio, AgentImage, AgentText, handle_agent_output_types | ||||
| from .utils import _is_package_available | ||||
| 
 | ||||
| 
 | ||||
| def pull_messages_from_step(step_log: AgentStepLog): | ||||
|     """Extract ChatMessage objects from agent steps""" | ||||
|     import gradio as gr | ||||
| 
 | ||||
|     if isinstance(step_log, ActionStep): | ||||
|         yield gr.ChatMessage(role="assistant", content=step_log.llm_output or "") | ||||
|         if step_log.tool_calls is not None: | ||||
|  | @ -57,6 +58,11 @@ def stream_to_gradio( | |||
|     additional_args: Optional[dict] = None, | ||||
| ): | ||||
|     """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" | ||||
|     if not _is_package_available("gradio"): | ||||
|         raise ModuleNotFoundError( | ||||
|             "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[audio]'`" | ||||
|         ) | ||||
|     import gradio as gr | ||||
| 
 | ||||
|     for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): | ||||
|         for message in pull_messages_from_step(step_log): | ||||
|  | @ -88,6 +94,10 @@ class GradioUI: | |||
|     """A one-line interface to launch your agent in Gradio""" | ||||
| 
 | ||||
|     def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None): | ||||
|         if not _is_package_available("gradio"): | ||||
|             raise ModuleNotFoundError( | ||||
|                 "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[audio]'`" | ||||
|             ) | ||||
|         self.agent = agent | ||||
|         self.file_upload_folder = file_upload_folder | ||||
|         if self.file_upload_folder is not None: | ||||
|  | @ -95,6 +105,8 @@ class GradioUI: | |||
|                 os.mkdir(file_upload_folder) | ||||
| 
 | ||||
|     def interact_with_agent(self, prompt, messages): | ||||
|         import gradio as gr | ||||
| 
 | ||||
|         messages.append(gr.ChatMessage(role="user", content=prompt)) | ||||
|         yield messages | ||||
|         for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False): | ||||
|  | @ -115,6 +127,7 @@ class GradioUI: | |||
|         """ | ||||
|         Handle file uploads, default allowed types are .pdf, .docx, and .txt | ||||
|         """ | ||||
|         import gradio as gr | ||||
| 
 | ||||
|         if file is None: | ||||
|             return gr.Textbox("No file uploaded", visible=True), file_uploads_log | ||||
|  | @ -161,6 +174,8 @@ class GradioUI: | |||
|         ) | ||||
| 
 | ||||
|     def launch(self): | ||||
|         import gradio as gr | ||||
| 
 | ||||
|         with gr.Blocks() as demo: | ||||
|             stored_messages = gr.State([]) | ||||
|             file_uploads_log = gr.State([]) | ||||
|  |  | |||
|  | @ -21,20 +21,18 @@ import random | |||
| from copy import deepcopy | ||||
| from dataclasses import asdict, dataclass | ||||
| from enum import Enum | ||||
| from typing import Any, Dict, List, Optional, Union | ||||
| from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union | ||||
| 
 | ||||
| from huggingface_hub import InferenceClient | ||||
| from transformers import ( | ||||
|     AutoModelForCausalLM, | ||||
|     AutoTokenizer, | ||||
|     StoppingCriteria, | ||||
|     StoppingCriteriaList, | ||||
|     is_torch_available, | ||||
| ) | ||||
| from huggingface_hub.utils import is_torch_available | ||||
| 
 | ||||
| from .tools import Tool | ||||
| from .utils import _is_package_available | ||||
| 
 | ||||
| 
 | ||||
| if TYPE_CHECKING: | ||||
|     from transformers import StoppingCriteriaList | ||||
| 
 | ||||
| logger = logging.getLogger(__name__) | ||||
| 
 | ||||
| DEFAULT_JSONAGENT_REGEX_GRAMMAR = { | ||||
|  | @ -320,6 +318,9 @@ class TransformersModel(Model): | |||
| 
 | ||||
|     This model allows you to communicate with Hugging Face's models using the Inference API. It can be used in both serverless mode or with a dedicated endpoint, supporting features like stop sequences and grammar customization. | ||||
| 
 | ||||
|     > [!TIP] | ||||
|     > You must have `transformers` and `torch` installed on your machine. Please run `pip install smolagents[transformers]` if it's not the case. | ||||
| 
 | ||||
|     Parameters: | ||||
|         model_id (`str`, *optional*, defaults to `"Qwen/Qwen2.5-Coder-32B-Instruct"`): | ||||
|             The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub. | ||||
|  | @ -358,9 +359,12 @@ class TransformersModel(Model): | |||
|         **kwargs, | ||||
|     ): | ||||
|         super().__init__() | ||||
|         if not is_torch_available(): | ||||
|             raise ImportError("Please install torch in order to use TransformersModel.") | ||||
|         if not is_torch_available() or not _is_package_available("transformers"): | ||||
|             raise ModuleNotFoundError( | ||||
|                 "Please install 'transformers' extra to use 'TransformersModel': `pip install 'smolagents[transformers]'`" | ||||
|             ) | ||||
|         import torch | ||||
|         from transformers import AutoModelForCausalLM, AutoTokenizer | ||||
| 
 | ||||
|         default_model_id = "HuggingFaceTB/SmolLM2-1.7B-Instruct" | ||||
|         if model_id is None: | ||||
|  | @ -387,7 +391,9 @@ class TransformersModel(Model): | |||
|             self.tokenizer = AutoTokenizer.from_pretrained(default_model_id) | ||||
|             self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device_map, torch_dtype=torch_dtype) | ||||
| 
 | ||||
|     def make_stopping_criteria(self, stop_sequences: List[str]) -> StoppingCriteriaList: | ||||
|     def make_stopping_criteria(self, stop_sequences: List[str]) -> "StoppingCriteriaList": | ||||
|         from transformers import StoppingCriteria, StoppingCriteriaList | ||||
| 
 | ||||
|         class StopOnStrings(StoppingCriteria): | ||||
|             def __init__(self, stop_strings: List[str], tokenizer): | ||||
|                 self.stop_strings = stop_strings | ||||
|  | @ -491,6 +497,7 @@ class LiteLLMModel(Model): | |||
|             raise ModuleNotFoundError( | ||||
|                 "Please install 'litellm' extra to use LiteLLMModel: `pip install 'smolagents[litellm]'`" | ||||
|             ) | ||||
| 
 | ||||
|         super().__init__() | ||||
|         self.model_id = model_id | ||||
|         # IMPORTANT - Set this to TRUE to add the function to the prompt for Non OpenAI LLMs | ||||
|  | @ -506,9 +513,10 @@ class LiteLLMModel(Model): | |||
|         grammar: Optional[str] = None, | ||||
|         tools_to_call_from: Optional[List[Tool]] = None, | ||||
|     ) -> ChatMessage: | ||||
|         messages = get_clean_message_list(messages, role_conversions=tool_role_conversions) | ||||
|         import litellm | ||||
| 
 | ||||
|         messages = get_clean_message_list(messages, role_conversions=tool_role_conversions) | ||||
| 
 | ||||
|         if tools_to_call_from: | ||||
|             response = litellm.completion( | ||||
|                 model=self.model_id, | ||||
|  |  | |||
|  | @ -35,54 +35,22 @@ from huggingface_hub import ( | |||
|     metadata_update, | ||||
|     upload_folder, | ||||
| ) | ||||
| from huggingface_hub.utils import RepositoryNotFoundError | ||||
| from huggingface_hub.utils import is_torch_available | ||||
| from packaging import version | ||||
| from transformers.dynamic_module_utils import get_imports | ||||
| from transformers.utils import ( | ||||
|     TypeHintParsingException, | ||||
|     cached_file, | ||||
|     get_json_schema, | ||||
|     is_accelerate_available, | ||||
|     is_torch_available, | ||||
| ) | ||||
| from transformers.utils.chat_template_utils import _parse_type_hint | ||||
| 
 | ||||
| from ._transformers_utils import ( | ||||
|     TypeHintParsingException, | ||||
|     _parse_type_hint, | ||||
|     get_imports, | ||||
|     get_json_schema, | ||||
| ) | ||||
| from .tool_validation import MethodChecker, validate_tool_attributes | ||||
| from .types import ImageType, handle_agent_input_types, handle_agent_output_types | ||||
| from .utils import instance_to_source | ||||
| from .types import handle_agent_input_types, handle_agent_output_types | ||||
| from .utils import _is_package_available, _is_pillow_available, instance_to_source | ||||
| 
 | ||||
| 
 | ||||
| logger = logging.getLogger(__name__) | ||||
| 
 | ||||
| if is_accelerate_available(): | ||||
|     from accelerate import PartialState | ||||
|     from accelerate.utils import send_to_device | ||||
| 
 | ||||
| if is_torch_available(): | ||||
|     from transformers import AutoProcessor | ||||
| else: | ||||
|     AutoProcessor = object | ||||
| 
 | ||||
| TOOL_CONFIG_FILE = "tool_config.json" | ||||
| 
 | ||||
| 
 | ||||
| def get_repo_type(repo_id, repo_type=None, **hub_kwargs): | ||||
|     if repo_type is not None: | ||||
|         return repo_type | ||||
|     try: | ||||
|         hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space", **hub_kwargs) | ||||
|         return "space" | ||||
|     except RepositoryNotFoundError: | ||||
|         try: | ||||
|             hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="model", **hub_kwargs) | ||||
|             return "model" | ||||
|         except RepositoryNotFoundError: | ||||
|             raise EnvironmentError(f"`{repo_id}` does not seem to be a valid repo identifier on the Hub.") | ||||
|         except Exception: | ||||
|             return "model" | ||||
|     except Exception: | ||||
|         return "space" | ||||
| 
 | ||||
| 
 | ||||
| def validate_after_init(cls): | ||||
|     original_init = cls.__init__ | ||||
|  | @ -337,12 +305,8 @@ class Tool: | |||
|             ) | ||||
| 
 | ||||
|         # Save requirements file | ||||
|         imports = {el for el in get_imports(tool_file) if el not in sys.stdlib_module_names} | {"smolagents"} | ||||
|         requirements_file = os.path.join(output_dir, "requirements.txt") | ||||
| 
 | ||||
|         imports = [] | ||||
|         for module in [tool_file]: | ||||
|             imports.extend(get_imports(module)) | ||||
|         imports = list(set([el for el in imports + ["smolagents"] if el not in sys.stdlib_module_names])) | ||||
|         with open(requirements_file, "w", encoding="utf-8") as f: | ||||
|             f.write("\n".join(imports) + "\n") | ||||
| 
 | ||||
|  | @ -439,53 +403,27 @@ class Tool: | |||
|                 `cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the | ||||
|                 others will be passed along to its init. | ||||
|         """ | ||||
|         assert trust_remote_code, ( | ||||
|             "Loading a tool from Hub requires to trust remote code. Make sure you've inspected the repo and pass `trust_remote_code=True` to load the tool." | ||||
|         ) | ||||
| 
 | ||||
|         hub_kwargs_names = [ | ||||
|             "cache_dir", | ||||
|             "force_download", | ||||
|             "resume_download", | ||||
|             "proxies", | ||||
|             "revision", | ||||
|             "repo_type", | ||||
|             "subfolder", | ||||
|             "local_files_only", | ||||
|         ] | ||||
|         hub_kwargs = {k: v for k, v in kwargs.items() if k in hub_kwargs_names} | ||||
| 
 | ||||
|         tool_file = "tool.py" | ||||
|         if not trust_remote_code: | ||||
|             raise ValueError( | ||||
|                 "Loading a tool from Hub requires to trust remote code. Make sure you've inspected the repo and pass `trust_remote_code=True` to load the tool." | ||||
|             ) | ||||
| 
 | ||||
|         # Get the tool's tool.py file. | ||||
|         hub_kwargs["repo_type"] = get_repo_type(repo_id, **hub_kwargs) | ||||
|         resolved_tool_file = cached_file( | ||||
|         tool_file = hf_hub_download( | ||||
|             repo_id, | ||||
|             tool_file, | ||||
|             "tool.py", | ||||
|             token=token, | ||||
|             **hub_kwargs, | ||||
|             _raise_exceptions_for_gated_repo=False, | ||||
|             _raise_exceptions_for_missing_entries=False, | ||||
|             _raise_exceptions_for_connection_errors=False, | ||||
|             repo_type="space", | ||||
|             cache_dir=kwargs.get("cache_dir"), | ||||
|             force_download=kwargs.get("force_download"), | ||||
|             resume_download=kwargs.get("resume_download"), | ||||
|             proxies=kwargs.get("proxies"), | ||||
|             revision=kwargs.get("revision"), | ||||
|             subfolder=kwargs.get("subfolder"), | ||||
|             local_files_only=kwargs.get("local_files_only"), | ||||
|         ) | ||||
|         tool_code = resolved_tool_file is not None | ||||
|         if resolved_tool_file is None: | ||||
|             resolved_tool_file = cached_file( | ||||
|                 repo_id, | ||||
|                 tool_file, | ||||
|                 token=token, | ||||
|                 **hub_kwargs, | ||||
|                 _raise_exceptions_for_gated_repo=False, | ||||
|                 _raise_exceptions_for_missing_entries=False, | ||||
|                 _raise_exceptions_for_connection_errors=False, | ||||
|             ) | ||||
|         if resolved_tool_file is None: | ||||
|             raise EnvironmentError( | ||||
|                 f"{repo_id} does not appear to provide a valid configuration in `tool_config.json` or `config.json`." | ||||
|             ) | ||||
| 
 | ||||
|         with open(resolved_tool_file, encoding="utf-8") as reader: | ||||
|             tool_code = "".join(reader.readlines()) | ||||
|         tool_code = Path(tool_file).read_text() | ||||
| 
 | ||||
|         # Find the Tool subclass in the namespace | ||||
|         with tempfile.TemporaryDirectory() as temp_dir: | ||||
|  | @ -613,7 +551,10 @@ class Tool: | |||
|             def sanitize_argument_for_prediction(self, arg): | ||||
|                 from gradio_client.utils import is_http_url_like | ||||
| 
 | ||||
|                 if isinstance(arg, ImageType): | ||||
|                 if _is_pillow_available(): | ||||
|                     from PIL.Image import Image | ||||
| 
 | ||||
|                 if _is_pillow_available() and isinstance(arg, Image): | ||||
|                     temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | ||||
|                     arg.save(temp_file.name) | ||||
|                     arg = temp_file.name | ||||
|  | @ -988,13 +929,13 @@ class PipelineTool(Tool): | |||
| 
 | ||||
|     - **model_class** (`type`) -- The class to use to load the model in this tool. | ||||
|     - **default_checkpoint** (`str`) -- The default checkpoint that should be used when the user doesn't specify one. | ||||
|     - **pre_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the | ||||
|     - **pre_processor_class** (`type`, *optional*, defaults to [`transformers.AutoProcessor`]) -- The class to use to load the | ||||
|       pre-processor | ||||
|     - **post_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the | ||||
|     - **post_processor_class** (`type`, *optional*, defaults to [`transformers.AutoProcessor`]) -- The class to use to load the | ||||
|       post-processor (when different from the pre-processor). | ||||
| 
 | ||||
|     Args: | ||||
|         model (`str` or [`PreTrainedModel`], *optional*): | ||||
|         model (`str` or [`transformers.PreTrainedModel`], *optional*): | ||||
|             The name of the checkpoint to use for the model, or the instantiated model. If unset, will default to the | ||||
|             value of the class attribute `default_checkpoint`. | ||||
|         pre_processor (`str` or `Any`, *optional*): | ||||
|  | @ -1019,9 +960,9 @@ class PipelineTool(Tool): | |||
|             Any additional keyword argument to send to the methods that will load the data from the Hub. | ||||
|     """ | ||||
| 
 | ||||
|     pre_processor_class = AutoProcessor | ||||
|     pre_processor_class = None | ||||
|     model_class = None | ||||
|     post_processor_class = AutoProcessor | ||||
|     post_processor_class = None | ||||
|     default_checkpoint = None | ||||
|     description = "This is a pipeline tool" | ||||
|     name = "pipeline" | ||||
|  | @ -1040,11 +981,10 @@ class PipelineTool(Tool): | |||
|         token=None, | ||||
|         **hub_kwargs, | ||||
|     ): | ||||
|         if not is_torch_available(): | ||||
|             raise ImportError("Please install torch in order to use this tool.") | ||||
| 
 | ||||
|         if not is_accelerate_available(): | ||||
|             raise ImportError("Please install accelerate in order to use this tool.") | ||||
|         if not is_torch_available() or not _is_package_available("accelerate"): | ||||
|             raise ModuleNotFoundError( | ||||
|                 "Please install 'transformers' extra to use a PipelineTool: `pip install 'smolagents[transformers]'`" | ||||
|             ) | ||||
| 
 | ||||
|         if model is None: | ||||
|             if self.default_checkpoint is None: | ||||
|  | @ -1071,6 +1011,10 @@ class PipelineTool(Tool): | |||
|         Instantiates the `pre_processor`, `model` and `post_processor` if necessary. | ||||
|         """ | ||||
|         if isinstance(self.pre_processor, str): | ||||
|             if self.pre_processor_class is None: | ||||
|                 from transformers import AutoProcessor | ||||
| 
 | ||||
|                 self.pre_processor_class = AutoProcessor | ||||
|             self.pre_processor = self.pre_processor_class.from_pretrained(self.pre_processor, **self.hub_kwargs) | ||||
| 
 | ||||
|         if isinstance(self.model, str): | ||||
|  | @ -1079,12 +1023,18 @@ class PipelineTool(Tool): | |||
|         if self.post_processor is None: | ||||
|             self.post_processor = self.pre_processor | ||||
|         elif isinstance(self.post_processor, str): | ||||
|             if self.post_processor_class is None: | ||||
|                 from transformers import AutoProcessor | ||||
| 
 | ||||
|                 self.post_processor_class = AutoProcessor | ||||
|             self.post_processor = self.post_processor_class.from_pretrained(self.post_processor, **self.hub_kwargs) | ||||
| 
 | ||||
|         if self.device is None: | ||||
|             if self.device_map is not None: | ||||
|                 self.device = list(self.model.hf_device_map.values())[0] | ||||
|             else: | ||||
|                 from accelerate import PartialState | ||||
| 
 | ||||
|                 self.device = PartialState().default_device | ||||
| 
 | ||||
|         if self.device_map is None: | ||||
|  | @ -1115,6 +1065,7 @@ class PipelineTool(Tool): | |||
| 
 | ||||
|     def __call__(self, *args, **kwargs): | ||||
|         import torch | ||||
|         from accelerate.utils import send_to_device | ||||
| 
 | ||||
|         args, kwargs = handle_agent_input_types(*args, **kwargs) | ||||
| 
 | ||||
|  |  | |||
|  | @ -12,7 +12,6 @@ | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| import importlib.util | ||||
| import logging | ||||
| import os | ||||
| import pathlib | ||||
|  | @ -22,26 +21,15 @@ from io import BytesIO | |||
| 
 | ||||
| import numpy as np | ||||
| import requests | ||||
| from transformers.utils import ( | ||||
|     is_torch_available, | ||||
|     is_vision_available, | ||||
| ) | ||||
| from huggingface_hub.utils import is_torch_available | ||||
| from PIL import Image | ||||
| from PIL.Image import Image as ImageType | ||||
| 
 | ||||
| from .utils import _is_package_available | ||||
| 
 | ||||
| 
 | ||||
| logger = logging.getLogger(__name__) | ||||
| 
 | ||||
| if is_vision_available(): | ||||
|     from PIL import Image | ||||
|     from PIL.Image import Image as ImageType | ||||
| else: | ||||
|     ImageType = object | ||||
| 
 | ||||
| if is_torch_available(): | ||||
|     import torch | ||||
|     from torch import Tensor | ||||
| else: | ||||
|     Tensor = object | ||||
| 
 | ||||
| 
 | ||||
| class AgentType: | ||||
|     """ | ||||
|  | @ -94,9 +82,6 @@ class AgentImage(AgentType, ImageType): | |||
|         AgentType.__init__(self, value) | ||||
|         ImageType.__init__(self) | ||||
| 
 | ||||
|         if not is_vision_available(): | ||||
|             raise ImportError("PIL must be installed in order to handle images.") | ||||
| 
 | ||||
|         self._path = None | ||||
|         self._raw = None | ||||
|         self._tensor = None | ||||
|  | @ -109,11 +94,15 @@ class AgentImage(AgentType, ImageType): | |||
|             self._raw = Image.open(BytesIO(value)) | ||||
|         elif isinstance(value, (str, pathlib.Path)): | ||||
|             self._path = value | ||||
|         elif isinstance(value, torch.Tensor): | ||||
|             self._tensor = value | ||||
|         elif isinstance(value, np.ndarray): | ||||
|             self._tensor = torch.from_numpy(value) | ||||
|         else: | ||||
|         elif is_torch_available(): | ||||
|             import torch | ||||
| 
 | ||||
|             if isinstance(value, torch.Tensor): | ||||
|                 self._tensor = value | ||||
|             if isinstance(value, np.ndarray): | ||||
|                 self._tensor = torch.from_numpy(value) | ||||
| 
 | ||||
|         if self._path is None and self._raw is None and self._tensor is None: | ||||
|             raise TypeError(f"Unsupported type for {self.__class__.__name__}: {type(value)}") | ||||
| 
 | ||||
|     def _ipython_display_(self, include=None, exclude=None): | ||||
|  | @ -183,10 +172,12 @@ class AgentAudio(AgentType, str): | |||
|     """ | ||||
| 
 | ||||
|     def __init__(self, value, samplerate=16_000): | ||||
|         if importlib.util.find_spec("soundfile") is None: | ||||
|         if not _is_package_available("soundfile") or not is_torch_available: | ||||
|             raise ModuleNotFoundError( | ||||
|                 "Please install 'audio' extra to use AgentAudio: `pip install 'smolagents[audio]'`" | ||||
|             ) | ||||
|         import torch | ||||
| 
 | ||||
|         super().__init__(value) | ||||
| 
 | ||||
|         self._path = None | ||||
|  | @ -223,6 +214,8 @@ class AgentAudio(AgentType, str): | |||
|         if self._tensor is not None: | ||||
|             return self._tensor | ||||
| 
 | ||||
|         import torch | ||||
| 
 | ||||
|         if self._path is not None: | ||||
|             if "://" in str(self._path): | ||||
|                 response = requests.get(self._path) | ||||
|  | @ -250,15 +243,7 @@ class AgentAudio(AgentType, str): | |||
|             return self._path | ||||
| 
 | ||||
| 
 | ||||
| AGENT_TYPE_MAPPING = {"string": AgentText, "image": AgentImage, "audio": AgentAudio} | ||||
| INSTANCE_TYPE_MAPPING = { | ||||
|     str: AgentText, | ||||
|     ImageType: AgentImage, | ||||
|     Tensor: AgentAudio, | ||||
| } | ||||
| 
 | ||||
| if is_torch_available(): | ||||
|     INSTANCE_TYPE_MAPPING[Tensor] = AgentAudio | ||||
| _AGENT_TYPE_MAPPING = {"string": AgentText, "image": AgentImage, "audio": AgentAudio} | ||||
| 
 | ||||
| 
 | ||||
| def handle_agent_input_types(*args, **kwargs): | ||||
|  | @ -268,17 +253,22 @@ def handle_agent_input_types(*args, **kwargs): | |||
| 
 | ||||
| 
 | ||||
| def handle_agent_output_types(output, output_type=None): | ||||
|     if output_type in AGENT_TYPE_MAPPING: | ||||
|     if output_type in _AGENT_TYPE_MAPPING: | ||||
|         # If the class has defined outputs, we can map directly according to the class definition | ||||
|         decoded_outputs = AGENT_TYPE_MAPPING[output_type](output) | ||||
|         decoded_outputs = _AGENT_TYPE_MAPPING[output_type](output) | ||||
|         return decoded_outputs | ||||
|     else: | ||||
|         # If the class does not have defined output, then we map according to the type | ||||
|         for _k, _v in INSTANCE_TYPE_MAPPING.items(): | ||||
|             if isinstance(output, _k): | ||||
|                 if _k is not object:  # avoid converting to audio if torch is not installed | ||||
|                     return _v(output) | ||||
|         return output | ||||
| 
 | ||||
|     # If the class does not have defined output, then we map according to the type | ||||
|     if isinstance(output, str): | ||||
|         return AgentText(output) | ||||
|     if isinstance(output, ImageType): | ||||
|         return AgentImage(output) | ||||
|     if is_torch_available(): | ||||
|         import torch | ||||
| 
 | ||||
|         if isinstance(output, torch.Tensor): | ||||
|             return AgentAudio(output) | ||||
|     return output | ||||
| 
 | ||||
| 
 | ||||
| __all__ = ["AgentType", "AgentImage", "AgentText", "AgentAudio"] | ||||
|  |  | |||
|  | @ -15,18 +15,30 @@ | |||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| import ast | ||||
| import importlib.metadata | ||||
| import importlib.util | ||||
| import inspect | ||||
| import json | ||||
| import re | ||||
| import types | ||||
| from functools import lru_cache | ||||
| from typing import Dict, Tuple, Union | ||||
| 
 | ||||
| from rich.console import Console | ||||
| 
 | ||||
| 
 | ||||
| def is_pygments_available(): | ||||
|     return importlib.util.find_spec("soundfile") is not None | ||||
| @lru_cache | ||||
| def _is_package_available(package_name: str) -> bool: | ||||
|     try: | ||||
|         importlib.metadata.version(package_name) | ||||
|         return True | ||||
|     except importlib.metadata.PackageNotFoundError: | ||||
|         return False | ||||
| 
 | ||||
| 
 | ||||
| @lru_cache | ||||
| def _is_pillow_available(): | ||||
|     return importlib.util.find_spec("PIL") is not None | ||||
| 
 | ||||
| 
 | ||||
| console = Console() | ||||
|  |  | |||
|  | @ -17,7 +17,7 @@ import unittest | |||
| import pytest | ||||
| 
 | ||||
| from smolagents.default_tools import PythonInterpreterTool, VisitWebpageTool | ||||
| from smolagents.types import AGENT_TYPE_MAPPING | ||||
| from smolagents.types import _AGENT_TYPE_MAPPING | ||||
| 
 | ||||
| from .test_tools import ToolTesterMixin | ||||
| 
 | ||||
|  | @ -46,7 +46,7 @@ class PythonInterpreterToolTester(unittest.TestCase, ToolTesterMixin): | |||
|     def test_agent_type_output(self): | ||||
|         inputs = ["2 * 2"] | ||||
|         output = self.tool(*inputs, sanitize_inputs_outputs=True) | ||||
|         output_type = AGENT_TYPE_MAPPING[self.tool.output_type] | ||||
|         output_type = _AGENT_TYPE_MAPPING[self.tool.output_type] | ||||
|         self.assertTrue(isinstance(output, output_type)) | ||||
| 
 | ||||
|     def test_agent_types_inputs(self): | ||||
|  | @ -56,13 +56,13 @@ class PythonInterpreterToolTester(unittest.TestCase, ToolTesterMixin): | |||
|         for _input, expected_input in zip(inputs, self.tool.inputs.values()): | ||||
|             input_type = expected_input["type"] | ||||
|             if isinstance(input_type, list): | ||||
|                 _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) | ||||
|                 _inputs.append([_AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) | ||||
|             else: | ||||
|                 _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) | ||||
|                 _inputs.append(_AGENT_TYPE_MAPPING[input_type](_input)) | ||||
| 
 | ||||
|         # Should not raise an error | ||||
|         output = self.tool(*inputs, sanitize_inputs_outputs=True) | ||||
|         output_type = AGENT_TYPE_MAPPING[self.tool.output_type] | ||||
|         output_type = _AGENT_TYPE_MAPPING[self.tool.output_type] | ||||
|         self.assertTrue(isinstance(output, output_type)) | ||||
| 
 | ||||
|     def test_imports_work(self): | ||||
|  |  | |||
|  | @ -22,7 +22,7 @@ from transformers import is_torch_available | |||
| from transformers.testing_utils import get_tests_dir, require_torch | ||||
| 
 | ||||
| from smolagents.default_tools import FinalAnswerTool | ||||
| from smolagents.types import AGENT_TYPE_MAPPING | ||||
| from smolagents.types import _AGENT_TYPE_MAPPING | ||||
| 
 | ||||
| from .test_tools import ToolTesterMixin | ||||
| 
 | ||||
|  | @ -55,5 +55,5 @@ class FinalAnswerToolTester(unittest.TestCase, ToolTesterMixin): | |||
|         inputs = self.create_inputs() | ||||
|         for input_type, input in inputs.items(): | ||||
|             output = self.tool(**input, sanitize_inputs_outputs=True) | ||||
|             agent_type = AGENT_TYPE_MAPPING[input_type] | ||||
|             agent_type = _AGENT_TYPE_MAPPING[input_type] | ||||
|             self.assertTrue(isinstance(output, agent_type)) | ||||
|  |  | |||
|  | @ -21,16 +21,12 @@ from unittest.mock import MagicMock, patch | |||
| import mcp | ||||
| import numpy as np | ||||
| import pytest | ||||
| import torch | ||||
| from transformers import is_torch_available, is_vision_available | ||||
| from transformers.testing_utils import get_tests_dir | ||||
| 
 | ||||
| from smolagents.tools import AUTHORIZED_TYPES, Tool, ToolCollection, tool | ||||
| from smolagents.types import ( | ||||
|     AGENT_TYPE_MAPPING, | ||||
|     AgentAudio, | ||||
|     AgentImage, | ||||
|     AgentText, | ||||
| ) | ||||
| from smolagents.types import _AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText | ||||
| 
 | ||||
| 
 | ||||
| if is_torch_available(): | ||||
|  | @ -96,7 +92,7 @@ class ToolTesterMixin: | |||
|         inputs = create_inputs(self.tool.inputs) | ||||
|         output = self.tool(**inputs, sanitize_inputs_outputs=True) | ||||
|         if self.tool.output_type != "any": | ||||
|             agent_type = AGENT_TYPE_MAPPING[self.tool.output_type] | ||||
|             agent_type = _AGENT_TYPE_MAPPING[self.tool.output_type] | ||||
|             self.assertTrue(isinstance(output, agent_type)) | ||||
| 
 | ||||
| 
 | ||||
|  |  | |||
|  | @ -121,4 +121,3 @@ class AgentTextTests(unittest.TestCase): | |||
| 
 | ||||
|         self.assertEqual(string, agent_type.to_string()) | ||||
|         self.assertEqual(string, agent_type.to_raw()) | ||||
|         self.assertEqual(string, agent_type) | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue