Make import time faster (optional deps + delay imports) (#253)

* adapt docs

* optional in pyproject.toml

* get rid of some transformers imports

* optional transformers in models.py

* gradio, transformers, litellm

* small refacto AgentType

* merge conflicts

* mouaif

* fix tests

* AgentText no longer a str

* Add back AgentType as str/Image

* fixed for good
This commit is contained in:
Lucain 2025-01-20 10:59:43 +01:00 committed by GitHub
parent a2ca95107f
commit d19ebc7a48
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
17 changed files with 593 additions and 259 deletions

View File

@ -55,6 +55,7 @@ agent.run(
<hfoption id="Local Transformers Model">
```python
# !pip install smolagents[transformers]
from smolagents import CodeAgent, TransformersModel
model_id = "meta-llama/Llama-3.2-3B-Instruct"
@ -72,6 +73,7 @@ agent.run(
To use `LiteLLMModel`, you need to set the environment variable `ANTHROPIC_API_KEY` or `OPENAI_API_KEY`, or pass `api_key` variable upon initialization.
```python
# !pip install smolagents[litellm]
from smolagents import CodeAgent, LiteLLMModel
model = LiteLLMModel(model_id="anthropic/claude-3-5-sonnet-latest", api_key="YOUR_ANTHROPIC_API_KEY") # Could use 'gpt-4o'
@ -85,6 +87,7 @@ agent.run(
<hfoption id="Ollama">
```python
# !pip install smolagents[litellm]
from smolagents import CodeAgent, LiteLLMModel
model = LiteLLMModel(

View File

@ -55,6 +55,9 @@ Both require arguments `model` and list of tools `tools` at initialization.
### GradioUI
> [!TIP]
> You must have `gradio` installed to use the UI. Please run `pip install smolagents[gradio]` if it's not the case.
[[autodoc]] GradioUI
## Models
@ -99,6 +102,9 @@ print(model([{"role": "user", "content": "Ok!"}], stop_sequences=["great"]))
>>> What a
```
> [!TIP]
> You must have `transformers` and `torch` installed on your machine. Please run `pip install smolagents[transformers]` if it's not the case.
[[autodoc]] TransformersModel
### HfApiModel

View File

@ -61,6 +61,7 @@ agent.run(
<hfoption id="本地Transformers模型">
```python
# !pip install smolagents[transformers]
from smolagents import CodeAgent, TransformersModel
model_id = "meta-llama/Llama-3.2-3B-Instruct"
@ -78,6 +79,7 @@ agent.run(
要使用 `LiteLLMModel`,您需要设置环境变量 `ANTHROPIC_API_KEY``OPENAI_API_KEY`,或者在初始化时传递 `api_key` 变量。
```python
# !pip install smolagents[litellm]
from smolagents import CodeAgent, LiteLLMModel
model = LiteLLMModel(model_id="anthropic/claude-3-5-sonnet-latest", api_key="YOUR_ANTHROPIC_API_KEY") # 也可以使用 'gpt-4o'
@ -91,6 +93,7 @@ agent.run(
<hfoption id="Ollama">
```python
# !pip install smolagents[litellm]
from smolagents import CodeAgent, LiteLLMModel
model = LiteLLMModel(

View File

@ -55,6 +55,9 @@ Both require arguments `model` and list of tools `tools` at initialization.
### GradioUI
> [!TIP]
> You must have `gradio` installed to use the UI. Please run `pip install smolagents[gradio]` if it's not the case.
[[autodoc]] GradioUI
## Models
@ -99,6 +102,9 @@ print(model([{"role": "user", "content": "Ok!"}], stop_sequences=["great"]))
>>> What a
```
> [!TIP]
> You must have `transformers` and `torch` installed on your machine. Please run `pip install smolagents[transformers]` if it's not the case.
[[autodoc]] TransformersModel
### HfApiModel

View File

@ -12,14 +12,12 @@ authors = [
readme = "README.md"
requires-python = ">=3.10"
dependencies = [
"transformers>=4.0.0",
"requests>=2.32.3",
"rich>=13.9.4",
"pandas>=2.2.3",
"jinja2>=3.1.4",
"pillow>=11.0.0",
"markdownify>=0.14.1",
"gradio>=5.8.0",
"duckduckgo-search>=6.3.7",
"python-dotenv>=1.0.1",
"e2b-code-interpreter>=1.0.3",
@ -27,12 +25,20 @@ dependencies = [
]
[project.optional-dependencies]
audio = [
"soundfile",
]
torch = [
"torch",
]
audio = [
"soundfile",
"smolagents[torch]",
]
transformers = [
"accelerate",
"transformers>=4.0.0",
"smolagents[torch]",
]
gradio = [
"gradio>=5.8.0",
]
litellm = [
"litellm>=1.55.10",
@ -47,9 +53,12 @@ openai = [
quality = [
"ruff>=0.9.0",
]
all = [
"smolagents[accelerate,audio,gradio,litellm,mcp,openai,transformers]",
]
test = [
"pytest>=8.1.0",
"smolagents[audio,litellm,mcp,openai,torch]",
"smolagents[all]",
]
dev = [
"smolagents[quality,test]",

View File

@ -16,13 +16,6 @@
# limitations under the License.
__version__ = "1.5.0.dev"
from typing import TYPE_CHECKING
from transformers.utils import _LazyModule
from transformers.utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .agents import *
from .default_tools import *
from .e2b_executor import *
@ -34,18 +27,3 @@ if TYPE_CHECKING:
from .tools import *
from .types import *
from .utils import *
else:
import sys
_file = globals()["__file__"]
import_structure = define_import_structure(_file)
import_structure[""] = {"__version__": __version__}
sys.modules[__name__] = _LazyModule(
__name__,
_file,
import_structure,
module_spec=__spec__,
extra_objects={"__version__": __version__},
)

View File

@ -0,0 +1,388 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This module contains utilities exclusively taken from `transformers` repository.
Since they are not specific to `transformers` and that `transformers` is an heavy dependencies, those helpers have
been duplicated.
TODO: move them to `huggingface_hub` to avoid code duplication.
"""
import inspect
import json
import os
import re
import types
from typing import (
Any,
Callable,
Dict,
List,
Optional,
Tuple,
Union,
get_args,
get_origin,
get_type_hints,
)
from huggingface_hub.utils import is_torch_available
from .utils import _is_pillow_available
def get_imports(filename: Union[str, os.PathLike]) -> List[str]:
"""
Extracts all the libraries (not relative imports this time) that are imported in a file.
Args:
filename (`str` or `os.PathLike`): The module file to inspect.
Returns:
`List[str]`: The list of all packages required to use the input module.
"""
with open(filename, "r", encoding="utf-8") as f:
content = f.read()
# filter out try/except block so in custom code we can have try/except imports
content = re.sub(r"\s*try\s*:.*?except.*?:", "", content, flags=re.DOTALL)
# filter out imports under is_flash_attn_2_available block for avoid import issues in cpu only environment
content = re.sub(
r"if is_flash_attn[a-zA-Z0-9_]+available\(\):\s*(from flash_attn\s*.*\s*)+",
"",
content,
flags=re.MULTILINE,
)
# Imports of the form `import xxx`
imports = re.findall(r"^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
# Imports of the form `from xxx import yyy`
imports += re.findall(r"^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
# Only keep the top-level module
imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]
return list(set(imports))
class TypeHintParsingException(Exception):
"""Exception raised for errors in parsing type hints to generate JSON schemas"""
class DocstringParsingException(Exception):
"""Exception raised for errors in parsing docstrings to generate JSON schemas"""
def get_json_schema(func: Callable) -> Dict:
"""
This function generates a JSON schema for a given function, based on its docstring and type hints. This is
mostly used for passing lists of tools to a chat template. The JSON schema contains the name and description of
the function, as well as the names, types and descriptions for each of its arguments. `get_json_schema()` requires
that the function has a docstring, and that each argument has a description in the docstring, in the standard
Google docstring format shown below. It also requires that all the function arguments have a valid Python type hint.
Although it is not required, a `Returns` block can also be added, which will be included in the schema. This is
optional because most chat templates ignore the return value of the function.
Args:
func: The function to generate a JSON schema for.
Returns:
A dictionary containing the JSON schema for the function.
Examples:
```python
>>> def multiply(x: float, y: float):
>>> '''
>>> A function that multiplies two numbers
>>>
>>> Args:
>>> x: The first number to multiply
>>> y: The second number to multiply
>>> '''
>>> return x * y
>>>
>>> print(get_json_schema(multiply))
{
"name": "multiply",
"description": "A function that multiplies two numbers",
"parameters": {
"type": "object",
"properties": {
"x": {"type": "number", "description": "The first number to multiply"},
"y": {"type": "number", "description": "The second number to multiply"}
},
"required": ["x", "y"]
}
}
```
The general use for these schemas is that they are used to generate tool descriptions for chat templates that
support them, like so:
```python
>>> from transformers import AutoTokenizer
>>> from transformers.utils import get_json_schema
>>>
>>> def multiply(x: float, y: float):
>>> '''
>>> A function that multiplies two numbers
>>>
>>> Args:
>>> x: The first number to multiply
>>> y: The second number to multiply
>>> return x * y
>>> '''
>>>
>>> multiply_schema = get_json_schema(multiply)
>>> tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01")
>>> messages = [{"role": "user", "content": "What is 179 x 4571?"}]
>>> formatted_chat = tokenizer.apply_chat_template(
>>> messages,
>>> tools=[multiply_schema],
>>> chat_template="tool_use",
>>> return_dict=True,
>>> return_tensors="pt",
>>> add_generation_prompt=True
>>> )
>>> # The formatted chat can now be passed to model.generate()
```
Each argument description can also have an optional `(choices: ...)` block at the end, such as
`(choices: ["tea", "coffee"])`, which will be parsed into an `enum` field in the schema. Note that this will
only be parsed correctly if it is at the end of the line:
```python
>>> def drink_beverage(beverage: str):
>>> '''
>>> A function that drinks a beverage
>>>
>>> Args:
>>> beverage: The beverage to drink (choices: ["tea", "coffee"])
>>> '''
>>> pass
>>>
>>> print(get_json_schema(drink_beverage))
```
{
'name': 'drink_beverage',
'description': 'A function that drinks a beverage',
'parameters': {
'type': 'object',
'properties': {
'beverage': {
'type': 'string',
'enum': ['tea', 'coffee'],
'description': 'The beverage to drink'
}
},
'required': ['beverage']
}
}
"""
doc = inspect.getdoc(func)
if not doc:
raise DocstringParsingException(
f"Cannot generate JSON schema for {func.__name__} because it has no docstring!"
)
doc = doc.strip()
main_doc, param_descriptions, return_doc = _parse_google_format_docstring(doc)
json_schema = _convert_type_hints_to_json_schema(func)
if (return_dict := json_schema["properties"].pop("return", None)) is not None:
if return_doc is not None: # We allow a missing return docstring since most templates ignore it
return_dict["description"] = return_doc
for arg, schema in json_schema["properties"].items():
if arg not in param_descriptions:
raise DocstringParsingException(
f"Cannot generate JSON schema for {func.__name__} because the docstring has no description for the argument '{arg}'"
)
desc = param_descriptions[arg]
enum_choices = re.search(r"\(choices:\s*(.*?)\)\s*$", desc, flags=re.IGNORECASE)
if enum_choices:
schema["enum"] = [c.strip() for c in json.loads(enum_choices.group(1))]
desc = enum_choices.string[: enum_choices.start()].strip()
schema["description"] = desc
output = {"name": func.__name__, "description": main_doc, "parameters": json_schema}
if return_dict is not None:
output["return"] = return_dict
return {"type": "function", "function": output}
# Extracts the initial segment of the docstring, containing the function description
description_re = re.compile(r"^(.*?)[\n\s]*(Args:|Returns:|Raises:|\Z)", re.DOTALL)
# Extracts the Args: block from the docstring
args_re = re.compile(r"\n\s*Args:\n\s*(.*?)[\n\s]*(Returns:|Raises:|\Z)", re.DOTALL)
# Splits the Args: block into individual arguments
args_split_re = re.compile(
r"""
(?:^|\n) # Match the start of the args block, or a newline
\s*(\w+):\s* # Capture the argument name and strip spacing
(.*?)\s* # Capture the argument description, which can span multiple lines, and strip trailing spacing
(?=\n\s*\w+:|\Z) # Stop when you hit the next argument or the end of the block
""",
re.DOTALL | re.VERBOSE,
)
# Extracts the Returns: block from the docstring, if present. Note that most chat templates ignore the return type/doc!
returns_re = re.compile(r"\n\s*Returns:\n\s*(.*?)[\n\s]*(Raises:|\Z)", re.DOTALL)
def _parse_google_format_docstring(
docstring: str,
) -> Tuple[Optional[str], Optional[Dict], Optional[str]]:
"""
Parses a Google-style docstring to extract the function description,
argument descriptions, and return description.
Args:
docstring (str): The docstring to parse.
Returns:
The function description, arguments, and return description.
"""
# Extract the sections
description_match = description_re.search(docstring)
args_match = args_re.search(docstring)
returns_match = returns_re.search(docstring)
# Clean and store the sections
description = description_match.group(1).strip() if description_match else None
docstring_args = args_match.group(1).strip() if args_match else None
returns = returns_match.group(1).strip() if returns_match else None
# Parsing the arguments into a dictionary
if docstring_args is not None:
docstring_args = "\n".join([line for line in docstring_args.split("\n") if line.strip()]) # Remove blank lines
matches = args_split_re.findall(docstring_args)
args_dict = {match[0]: re.sub(r"\s*\n+\s*", " ", match[1].strip()) for match in matches}
else:
args_dict = {}
return description, args_dict, returns
def _convert_type_hints_to_json_schema(func: Callable) -> Dict:
type_hints = get_type_hints(func)
signature = inspect.signature(func)
required = []
for param_name, param in signature.parameters.items():
if param.annotation == inspect.Parameter.empty:
raise TypeHintParsingException(f"Argument {param.name} is missing a type hint in function {func.__name__}")
if param.default == inspect.Parameter.empty:
required.append(param_name)
properties = {}
for param_name, param_type in type_hints.items():
properties[param_name] = _parse_type_hint(param_type)
schema = {"type": "object", "properties": properties}
if required:
schema["required"] = required
return schema
def _parse_type_hint(hint: str) -> Dict:
origin = get_origin(hint)
args = get_args(hint)
if origin is None:
try:
return _get_json_schema_type(hint)
except KeyError:
raise TypeHintParsingException(
"Couldn't parse this type hint, likely due to a custom class or object: ",
hint,
)
elif origin is Union or (hasattr(types, "UnionType") and origin is types.UnionType):
# Recurse into each of the subtypes in the Union, except None, which is handled separately at the end
subtypes = [_parse_type_hint(t) for t in args if t is not type(None)]
if len(subtypes) == 1:
# A single non-null type can be expressed directly
return_dict = subtypes[0]
elif all(isinstance(subtype["type"], str) for subtype in subtypes):
# A union of basic types can be expressed as a list in the schema
return_dict = {"type": sorted([subtype["type"] for subtype in subtypes])}
else:
# A union of more complex types requires "anyOf"
return_dict = {"anyOf": subtypes}
if type(None) in args:
return_dict["nullable"] = True
return return_dict
elif origin is list:
if not args:
return {"type": "array"}
else:
# Lists can only have a single type argument, so recurse into it
return {"type": "array", "items": _parse_type_hint(args[0])}
elif origin is tuple:
if not args:
return {"type": "array"}
if len(args) == 1:
raise TypeHintParsingException(
f"The type hint {str(hint).replace('typing.', '')} is a Tuple with a single element, which "
"we do not automatically convert to JSON schema as it is rarely necessary. If this input can contain "
"more than one element, we recommend "
"using a List[] type instead, or if it really is a single element, remove the Tuple[] wrapper and just "
"pass the element directly."
)
if ... in args:
raise TypeHintParsingException(
"Conversion of '...' is not supported in Tuple type hints. "
"Use List[] types for variable-length"
" inputs instead."
)
return {"type": "array", "prefixItems": [_parse_type_hint(t) for t in args]}
elif origin is dict:
# The JSON equivalent to a dict is 'object', which mandates that all keys are strings
# However, we can specify the type of the dict values with "additionalProperties"
out = {"type": "object"}
if len(args) == 2:
out["additionalProperties"] = _parse_type_hint(args[1])
return out
raise TypeHintParsingException("Couldn't parse this type hint, likely due to a custom class or object: ", hint)
_BASE_TYPE_MAPPING = {
int: {"type": "integer"},
float: {"type": "number"},
str: {"type": "string"},
bool: {"type": "boolean"},
Any: {},
}
def _get_json_schema_type(param_type: str) -> Dict[str, str]:
if param_type in _BASE_TYPE_MAPPING:
return _BASE_TYPE_MAPPING[param_type]
if str(param_type) == "Image" and _is_pillow_available():
from PIL.Image import Image
if param_type == Image:
return {"type": "image"}
if str(param_type) == "Tensor" and is_torch_available():
from torch import Tensor
if param_type == Tensor:
return {"type": "audio"}
return {"type": "object"}

View File

@ -14,33 +14,19 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import re
from dataclasses import dataclass
from typing import Dict, Optional
from huggingface_hub import hf_hub_download, list_spaces
from transformers.utils import is_offline_mode, is_torch_available
from .local_python_executor import (
BASE_BUILTIN_MODULES,
BASE_PYTHON_TOOLS,
evaluate_python_code,
)
from .tools import TOOL_CONFIG_FILE, PipelineTool, Tool
from .tools import PipelineTool, Tool
from .types import AgentAudio
if is_torch_available():
from transformers.models.whisper import (
WhisperForConditionalGeneration,
WhisperProcessor,
)
else:
WhisperForConditionalGeneration = object
WhisperProcessor = object
@dataclass
class PreTool:
name: str
@ -51,31 +37,6 @@ class PreTool:
repo_id: str
def get_remote_tools(logger, organization="huggingface-tools"):
if is_offline_mode():
logger.info("You are in offline mode, so remote tools are not available.")
return {}
spaces = list_spaces(author=organization)
tools = {}
for space_info in spaces:
repo_id = space_info.id
resolved_config_file = hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space")
with open(resolved_config_file, encoding="utf-8") as reader:
config = json.load(reader)
task = repo_id.split("/")[-1]
tools[config["name"]] = PreTool(
task=task,
description=config["description"],
repo_id=repo_id,
name=task,
inputs=config["inputs"],
output_type=config["output_type"],
)
return tools
class PythonInterpreterTool(Tool):
name = "python_interpreter"
description = "This is a tool that evaluates python code. It can be used to perform calculations."
@ -150,10 +111,10 @@ class DuckDuckGoSearchTool(Tool):
self.max_results = max_results
try:
from duckduckgo_search import DDGS
except ImportError:
except ImportError as e:
raise ImportError(
"You must install package `duckduckgo_search` to run this tool: for instance run `pip install duckduckgo-search`."
)
) from e
self.ddgs = DDGS()
def forward(self, query: str) -> str:
@ -259,10 +220,10 @@ class VisitWebpageTool(Tool):
from requests.exceptions import RequestException
from smolagents.utils import truncate_content
except ImportError:
except ImportError as e:
raise ImportError(
"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`."
)
) from e
try:
# Send a GET request to the URL
response = requests.get(url)
@ -286,9 +247,6 @@ class SpeechToTextTool(PipelineTool):
default_checkpoint = "openai/whisper-large-v3-turbo"
description = "This is a tool that transcribes an audio into text. It returns the transcribed text."
name = "transcriber"
pre_processor_class = WhisperProcessor
model_class = WhisperForConditionalGeneration
inputs = {
"audio": {
"type": "audio",
@ -297,6 +255,18 @@ class SpeechToTextTool(PipelineTool):
}
output_type = "string"
def __new__(cls):
from transformers.models.whisper import (
WhisperForConditionalGeneration,
WhisperProcessor,
)
if not hasattr(cls, "pre_processor_class"):
cls.pre_processor_class = WhisperProcessor
if not hasattr(cls, "model_class"):
cls.model_class = WhisperForConditionalGeneration
return super().__new__()
def encode(self, audio):
audio = AgentAudio(audio).to_raw()
return self.pre_processor(audio, return_tensors="pt")

View File

@ -19,14 +19,15 @@ import re
import shutil
from typing import Optional
import gradio as gr
from .agents import ActionStep, AgentStepLog, MultiStepAgent
from .types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from .utils import _is_package_available
def pull_messages_from_step(step_log: AgentStepLog):
"""Extract ChatMessage objects from agent steps"""
import gradio as gr
if isinstance(step_log, ActionStep):
yield gr.ChatMessage(role="assistant", content=step_log.llm_output or "")
if step_log.tool_calls is not None:
@ -57,6 +58,11 @@ def stream_to_gradio(
additional_args: Optional[dict] = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[audio]'`"
)
import gradio as gr
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
for message in pull_messages_from_step(step_log):
@ -88,6 +94,10 @@ class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[audio]'`"
)
self.agent = agent
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
@ -95,6 +105,8 @@ class GradioUI:
os.mkdir(file_upload_folder)
def interact_with_agent(self, prompt, messages):
import gradio as gr
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
@ -115,6 +127,7 @@ class GradioUI:
"""
Handle file uploads, default allowed types are .pdf, .docx, and .txt
"""
import gradio as gr
if file is None:
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
@ -161,6 +174,8 @@ class GradioUI:
)
def launch(self):
import gradio as gr
with gr.Blocks() as demo:
stored_messages = gr.State([])
file_uploads_log = gr.State([])

View File

@ -21,20 +21,18 @@ import random
from copy import deepcopy
from dataclasses import asdict, dataclass
from enum import Enum
from typing import Any, Dict, List, Optional, Union
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
from huggingface_hub import InferenceClient
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
StoppingCriteria,
StoppingCriteriaList,
is_torch_available,
)
from huggingface_hub.utils import is_torch_available
from .tools import Tool
from .utils import _is_package_available
if TYPE_CHECKING:
from transformers import StoppingCriteriaList
logger = logging.getLogger(__name__)
DEFAULT_JSONAGENT_REGEX_GRAMMAR = {
@ -320,6 +318,9 @@ class TransformersModel(Model):
This model allows you to communicate with Hugging Face's models using the Inference API. It can be used in both serverless mode or with a dedicated endpoint, supporting features like stop sequences and grammar customization.
> [!TIP]
> You must have `transformers` and `torch` installed on your machine. Please run `pip install smolagents[transformers]` if it's not the case.
Parameters:
model_id (`str`, *optional*, defaults to `"Qwen/Qwen2.5-Coder-32B-Instruct"`):
The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
@ -358,9 +359,12 @@ class TransformersModel(Model):
**kwargs,
):
super().__init__()
if not is_torch_available():
raise ImportError("Please install torch in order to use TransformersModel.")
if not is_torch_available() or not _is_package_available("transformers"):
raise ModuleNotFoundError(
"Please install 'transformers' extra to use 'TransformersModel': `pip install 'smolagents[transformers]'`"
)
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
default_model_id = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
if model_id is None:
@ -387,7 +391,9 @@ class TransformersModel(Model):
self.tokenizer = AutoTokenizer.from_pretrained(default_model_id)
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device_map, torch_dtype=torch_dtype)
def make_stopping_criteria(self, stop_sequences: List[str]) -> StoppingCriteriaList:
def make_stopping_criteria(self, stop_sequences: List[str]) -> "StoppingCriteriaList":
from transformers import StoppingCriteria, StoppingCriteriaList
class StopOnStrings(StoppingCriteria):
def __init__(self, stop_strings: List[str], tokenizer):
self.stop_strings = stop_strings
@ -491,6 +497,7 @@ class LiteLLMModel(Model):
raise ModuleNotFoundError(
"Please install 'litellm' extra to use LiteLLMModel: `pip install 'smolagents[litellm]'`"
)
super().__init__()
self.model_id = model_id
# IMPORTANT - Set this to TRUE to add the function to the prompt for Non OpenAI LLMs
@ -506,9 +513,10 @@ class LiteLLMModel(Model):
grammar: Optional[str] = None,
tools_to_call_from: Optional[List[Tool]] = None,
) -> ChatMessage:
messages = get_clean_message_list(messages, role_conversions=tool_role_conversions)
import litellm
messages = get_clean_message_list(messages, role_conversions=tool_role_conversions)
if tools_to_call_from:
response = litellm.completion(
model=self.model_id,

View File

@ -35,54 +35,22 @@ from huggingface_hub import (
metadata_update,
upload_folder,
)
from huggingface_hub.utils import RepositoryNotFoundError
from huggingface_hub.utils import is_torch_available
from packaging import version
from transformers.dynamic_module_utils import get_imports
from transformers.utils import (
TypeHintParsingException,
cached_file,
get_json_schema,
is_accelerate_available,
is_torch_available,
)
from transformers.utils.chat_template_utils import _parse_type_hint
from ._transformers_utils import (
TypeHintParsingException,
_parse_type_hint,
get_imports,
get_json_schema,
)
from .tool_validation import MethodChecker, validate_tool_attributes
from .types import ImageType, handle_agent_input_types, handle_agent_output_types
from .utils import instance_to_source
from .types import handle_agent_input_types, handle_agent_output_types
from .utils import _is_package_available, _is_pillow_available, instance_to_source
logger = logging.getLogger(__name__)
if is_accelerate_available():
from accelerate import PartialState
from accelerate.utils import send_to_device
if is_torch_available():
from transformers import AutoProcessor
else:
AutoProcessor = object
TOOL_CONFIG_FILE = "tool_config.json"
def get_repo_type(repo_id, repo_type=None, **hub_kwargs):
if repo_type is not None:
return repo_type
try:
hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space", **hub_kwargs)
return "space"
except RepositoryNotFoundError:
try:
hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="model", **hub_kwargs)
return "model"
except RepositoryNotFoundError:
raise EnvironmentError(f"`{repo_id}` does not seem to be a valid repo identifier on the Hub.")
except Exception:
return "model"
except Exception:
return "space"
def validate_after_init(cls):
original_init = cls.__init__
@ -337,12 +305,8 @@ class Tool:
)
# Save requirements file
imports = {el for el in get_imports(tool_file) if el not in sys.stdlib_module_names} | {"smolagents"}
requirements_file = os.path.join(output_dir, "requirements.txt")
imports = []
for module in [tool_file]:
imports.extend(get_imports(module))
imports = list(set([el for el in imports + ["smolagents"] if el not in sys.stdlib_module_names]))
with open(requirements_file, "w", encoding="utf-8") as f:
f.write("\n".join(imports) + "\n")
@ -439,53 +403,27 @@ class Tool:
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the
others will be passed along to its init.
"""
assert trust_remote_code, (
if not trust_remote_code:
raise ValueError(
"Loading a tool from Hub requires to trust remote code. Make sure you've inspected the repo and pass `trust_remote_code=True` to load the tool."
)
hub_kwargs_names = [
"cache_dir",
"force_download",
"resume_download",
"proxies",
"revision",
"repo_type",
"subfolder",
"local_files_only",
]
hub_kwargs = {k: v for k, v in kwargs.items() if k in hub_kwargs_names}
tool_file = "tool.py"
# Get the tool's tool.py file.
hub_kwargs["repo_type"] = get_repo_type(repo_id, **hub_kwargs)
resolved_tool_file = cached_file(
tool_file = hf_hub_download(
repo_id,
tool_file,
"tool.py",
token=token,
**hub_kwargs,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
tool_code = resolved_tool_file is not None
if resolved_tool_file is None:
resolved_tool_file = cached_file(
repo_id,
tool_file,
token=token,
**hub_kwargs,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
if resolved_tool_file is None:
raise EnvironmentError(
f"{repo_id} does not appear to provide a valid configuration in `tool_config.json` or `config.json`."
repo_type="space",
cache_dir=kwargs.get("cache_dir"),
force_download=kwargs.get("force_download"),
resume_download=kwargs.get("resume_download"),
proxies=kwargs.get("proxies"),
revision=kwargs.get("revision"),
subfolder=kwargs.get("subfolder"),
local_files_only=kwargs.get("local_files_only"),
)
with open(resolved_tool_file, encoding="utf-8") as reader:
tool_code = "".join(reader.readlines())
tool_code = Path(tool_file).read_text()
# Find the Tool subclass in the namespace
with tempfile.TemporaryDirectory() as temp_dir:
@ -613,7 +551,10 @@ class Tool:
def sanitize_argument_for_prediction(self, arg):
from gradio_client.utils import is_http_url_like
if isinstance(arg, ImageType):
if _is_pillow_available():
from PIL.Image import Image
if _is_pillow_available() and isinstance(arg, Image):
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
arg.save(temp_file.name)
arg = temp_file.name
@ -988,13 +929,13 @@ class PipelineTool(Tool):
- **model_class** (`type`) -- The class to use to load the model in this tool.
- **default_checkpoint** (`str`) -- The default checkpoint that should be used when the user doesn't specify one.
- **pre_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the
- **pre_processor_class** (`type`, *optional*, defaults to [`transformers.AutoProcessor`]) -- The class to use to load the
pre-processor
- **post_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the
- **post_processor_class** (`type`, *optional*, defaults to [`transformers.AutoProcessor`]) -- The class to use to load the
post-processor (when different from the pre-processor).
Args:
model (`str` or [`PreTrainedModel`], *optional*):
model (`str` or [`transformers.PreTrainedModel`], *optional*):
The name of the checkpoint to use for the model, or the instantiated model. If unset, will default to the
value of the class attribute `default_checkpoint`.
pre_processor (`str` or `Any`, *optional*):
@ -1019,9 +960,9 @@ class PipelineTool(Tool):
Any additional keyword argument to send to the methods that will load the data from the Hub.
"""
pre_processor_class = AutoProcessor
pre_processor_class = None
model_class = None
post_processor_class = AutoProcessor
post_processor_class = None
default_checkpoint = None
description = "This is a pipeline tool"
name = "pipeline"
@ -1040,11 +981,10 @@ class PipelineTool(Tool):
token=None,
**hub_kwargs,
):
if not is_torch_available():
raise ImportError("Please install torch in order to use this tool.")
if not is_accelerate_available():
raise ImportError("Please install accelerate in order to use this tool.")
if not is_torch_available() or not _is_package_available("accelerate"):
raise ModuleNotFoundError(
"Please install 'transformers' extra to use a PipelineTool: `pip install 'smolagents[transformers]'`"
)
if model is None:
if self.default_checkpoint is None:
@ -1071,6 +1011,10 @@ class PipelineTool(Tool):
Instantiates the `pre_processor`, `model` and `post_processor` if necessary.
"""
if isinstance(self.pre_processor, str):
if self.pre_processor_class is None:
from transformers import AutoProcessor
self.pre_processor_class = AutoProcessor
self.pre_processor = self.pre_processor_class.from_pretrained(self.pre_processor, **self.hub_kwargs)
if isinstance(self.model, str):
@ -1079,12 +1023,18 @@ class PipelineTool(Tool):
if self.post_processor is None:
self.post_processor = self.pre_processor
elif isinstance(self.post_processor, str):
if self.post_processor_class is None:
from transformers import AutoProcessor
self.post_processor_class = AutoProcessor
self.post_processor = self.post_processor_class.from_pretrained(self.post_processor, **self.hub_kwargs)
if self.device is None:
if self.device_map is not None:
self.device = list(self.model.hf_device_map.values())[0]
else:
from accelerate import PartialState
self.device = PartialState().default_device
if self.device_map is None:
@ -1115,6 +1065,7 @@ class PipelineTool(Tool):
def __call__(self, *args, **kwargs):
import torch
from accelerate.utils import send_to_device
args, kwargs = handle_agent_input_types(*args, **kwargs)

View File

@ -12,7 +12,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.util
import logging
import os
import pathlib
@ -22,26 +21,15 @@ from io import BytesIO
import numpy as np
import requests
from transformers.utils import (
is_torch_available,
is_vision_available,
)
from huggingface_hub.utils import is_torch_available
from PIL import Image
from PIL.Image import Image as ImageType
from .utils import _is_package_available
logger = logging.getLogger(__name__)
if is_vision_available():
from PIL import Image
from PIL.Image import Image as ImageType
else:
ImageType = object
if is_torch_available():
import torch
from torch import Tensor
else:
Tensor = object
class AgentType:
"""
@ -94,9 +82,6 @@ class AgentImage(AgentType, ImageType):
AgentType.__init__(self, value)
ImageType.__init__(self)
if not is_vision_available():
raise ImportError("PIL must be installed in order to handle images.")
self._path = None
self._raw = None
self._tensor = None
@ -109,11 +94,15 @@ class AgentImage(AgentType, ImageType):
self._raw = Image.open(BytesIO(value))
elif isinstance(value, (str, pathlib.Path)):
self._path = value
elif isinstance(value, torch.Tensor):
elif is_torch_available():
import torch
if isinstance(value, torch.Tensor):
self._tensor = value
elif isinstance(value, np.ndarray):
if isinstance(value, np.ndarray):
self._tensor = torch.from_numpy(value)
else:
if self._path is None and self._raw is None and self._tensor is None:
raise TypeError(f"Unsupported type for {self.__class__.__name__}: {type(value)}")
def _ipython_display_(self, include=None, exclude=None):
@ -183,10 +172,12 @@ class AgentAudio(AgentType, str):
"""
def __init__(self, value, samplerate=16_000):
if importlib.util.find_spec("soundfile") is None:
if not _is_package_available("soundfile") or not is_torch_available:
raise ModuleNotFoundError(
"Please install 'audio' extra to use AgentAudio: `pip install 'smolagents[audio]'`"
)
import torch
super().__init__(value)
self._path = None
@ -223,6 +214,8 @@ class AgentAudio(AgentType, str):
if self._tensor is not None:
return self._tensor
import torch
if self._path is not None:
if "://" in str(self._path):
response = requests.get(self._path)
@ -250,15 +243,7 @@ class AgentAudio(AgentType, str):
return self._path
AGENT_TYPE_MAPPING = {"string": AgentText, "image": AgentImage, "audio": AgentAudio}
INSTANCE_TYPE_MAPPING = {
str: AgentText,
ImageType: AgentImage,
Tensor: AgentAudio,
}
if is_torch_available():
INSTANCE_TYPE_MAPPING[Tensor] = AgentAudio
_AGENT_TYPE_MAPPING = {"string": AgentText, "image": AgentImage, "audio": AgentAudio}
def handle_agent_input_types(*args, **kwargs):
@ -268,16 +253,21 @@ def handle_agent_input_types(*args, **kwargs):
def handle_agent_output_types(output, output_type=None):
if output_type in AGENT_TYPE_MAPPING:
if output_type in _AGENT_TYPE_MAPPING:
# If the class has defined outputs, we can map directly according to the class definition
decoded_outputs = AGENT_TYPE_MAPPING[output_type](output)
decoded_outputs = _AGENT_TYPE_MAPPING[output_type](output)
return decoded_outputs
else:
# If the class does not have defined output, then we map according to the type
for _k, _v in INSTANCE_TYPE_MAPPING.items():
if isinstance(output, _k):
if _k is not object: # avoid converting to audio if torch is not installed
return _v(output)
if isinstance(output, str):
return AgentText(output)
if isinstance(output, ImageType):
return AgentImage(output)
if is_torch_available():
import torch
if isinstance(output, torch.Tensor):
return AgentAudio(output)
return output

View File

@ -15,18 +15,30 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import ast
import importlib.metadata
import importlib.util
import inspect
import json
import re
import types
from functools import lru_cache
from typing import Dict, Tuple, Union
from rich.console import Console
def is_pygments_available():
return importlib.util.find_spec("soundfile") is not None
@lru_cache
def _is_package_available(package_name: str) -> bool:
try:
importlib.metadata.version(package_name)
return True
except importlib.metadata.PackageNotFoundError:
return False
@lru_cache
def _is_pillow_available():
return importlib.util.find_spec("PIL") is not None
console = Console()

View File

@ -17,7 +17,7 @@ import unittest
import pytest
from smolagents.default_tools import PythonInterpreterTool, VisitWebpageTool
from smolagents.types import AGENT_TYPE_MAPPING
from smolagents.types import _AGENT_TYPE_MAPPING
from .test_tools import ToolTesterMixin
@ -46,7 +46,7 @@ class PythonInterpreterToolTester(unittest.TestCase, ToolTesterMixin):
def test_agent_type_output(self):
inputs = ["2 * 2"]
output = self.tool(*inputs, sanitize_inputs_outputs=True)
output_type = AGENT_TYPE_MAPPING[self.tool.output_type]
output_type = _AGENT_TYPE_MAPPING[self.tool.output_type]
self.assertTrue(isinstance(output, output_type))
def test_agent_types_inputs(self):
@ -56,13 +56,13 @@ class PythonInterpreterToolTester(unittest.TestCase, ToolTesterMixin):
for _input, expected_input in zip(inputs, self.tool.inputs.values()):
input_type = expected_input["type"]
if isinstance(input_type, list):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type])
_inputs.append([_AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type])
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input))
_inputs.append(_AGENT_TYPE_MAPPING[input_type](_input))
# Should not raise an error
output = self.tool(*inputs, sanitize_inputs_outputs=True)
output_type = AGENT_TYPE_MAPPING[self.tool.output_type]
output_type = _AGENT_TYPE_MAPPING[self.tool.output_type]
self.assertTrue(isinstance(output, output_type))
def test_imports_work(self):

View File

@ -22,7 +22,7 @@ from transformers import is_torch_available
from transformers.testing_utils import get_tests_dir, require_torch
from smolagents.default_tools import FinalAnswerTool
from smolagents.types import AGENT_TYPE_MAPPING
from smolagents.types import _AGENT_TYPE_MAPPING
from .test_tools import ToolTesterMixin
@ -55,5 +55,5 @@ class FinalAnswerToolTester(unittest.TestCase, ToolTesterMixin):
inputs = self.create_inputs()
for input_type, input in inputs.items():
output = self.tool(**input, sanitize_inputs_outputs=True)
agent_type = AGENT_TYPE_MAPPING[input_type]
agent_type = _AGENT_TYPE_MAPPING[input_type]
self.assertTrue(isinstance(output, agent_type))

View File

@ -21,16 +21,12 @@ from unittest.mock import MagicMock, patch
import mcp
import numpy as np
import pytest
import torch
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir
from smolagents.tools import AUTHORIZED_TYPES, Tool, ToolCollection, tool
from smolagents.types import (
AGENT_TYPE_MAPPING,
AgentAudio,
AgentImage,
AgentText,
)
from smolagents.types import _AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
@ -96,7 +92,7 @@ class ToolTesterMixin:
inputs = create_inputs(self.tool.inputs)
output = self.tool(**inputs, sanitize_inputs_outputs=True)
if self.tool.output_type != "any":
agent_type = AGENT_TYPE_MAPPING[self.tool.output_type]
agent_type = _AGENT_TYPE_MAPPING[self.tool.output_type]
self.assertTrue(isinstance(output, agent_type))

View File

@ -121,4 +121,3 @@ class AgentTextTests(unittest.TestCase):
self.assertEqual(string, agent_type.to_string())
self.assertEqual(string, agent_type.to_raw())
self.assertEqual(string, agent_type)