Make doc buildable with new names
This commit is contained in:
parent
021ece34ca
commit
775f6e8d7f
|
@ -47,7 +47,7 @@ Once you have setup the `doc-builder` and additional packages with the pip insta
|
|||
you can generate the documentation by typing the following command:
|
||||
|
||||
```bash
|
||||
doc-builder build agents docs/source/ --build_dir ~/tmp/test-build
|
||||
doc-builder build smolagents docs/source/ --build_dir ~/tmp/test-build
|
||||
```
|
||||
|
||||
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
|
||||
|
@ -59,7 +59,7 @@ Markdown editor.
|
|||
To preview the docs, run the following command:
|
||||
|
||||
```bash
|
||||
doc-builder preview agents docs/source/
|
||||
doc-builder preview smolagents docs/source/
|
||||
```
|
||||
|
||||
The docs will be viewable at [http://localhost:5173](http://localhost:5173). You can also preview the docs once you
|
||||
|
|
|
@ -30,21 +30,18 @@ contains the API docs for the underlying classes.
|
|||
Our agents inherit from [`MultiStepAgent`], which means they can act in multiple steps, each step consisting of one thought, then one tool call and execution. Read more in [this conceptual guide](../conceptual_guides/react).
|
||||
|
||||
We provide two types of agents, based on the main [`Agent`] class.
|
||||
- [`CodeAgent`] is the default agent, it writes its tool calls in Python code.
|
||||
- [`JsonAgent`] writes its tool calls in JSON.
|
||||
- [`CodeAgent`] writes its tool calls in Python code.
|
||||
|
||||
### BaseAgent
|
||||
|
||||
[[autodoc]] BaseAgent
|
||||
|
||||
|
||||
### React agents
|
||||
### Classes of agents
|
||||
|
||||
[[autodoc]] MultiStepAgent
|
||||
|
||||
[[autodoc]] CodeAgent
|
||||
|
||||
[[autodoc]] JsonAgent
|
||||
|
||||
[[autodoc]] CodeAgent
|
||||
|
||||
### ManagedAgent
|
||||
|
||||
|
|
|
@ -71,12 +71,12 @@ These types have three specific purposes:
|
|||
|
||||
### AgentText
|
||||
|
||||
[[autodoc]] agents.types.AgentText
|
||||
[[autodoc]] smolagents.types.AgentText
|
||||
|
||||
### AgentImage
|
||||
|
||||
[[autodoc]] agents.types.AgentImage
|
||||
[[autodoc]] smolagents.types.AgentImage
|
||||
|
||||
### AgentAudio
|
||||
|
||||
[[autodoc]] agents.types.AgentAudio
|
||||
[[autodoc]] smolagents.types.AgentAudio
|
||||
|
|
|
@ -22,6 +22,7 @@ dependencies = [
|
|||
"duckduckgo-search>=6.3.7",
|
||||
"python-dotenv>=1.0.1",
|
||||
"e2b-code-interpreter>=1.0.3",
|
||||
"torch>=2.5.1",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
|
|
|
@ -177,6 +177,7 @@ class MultiStepAgent:
|
|||
Agent class that solves the given task step by step, using the ReAct framework:
|
||||
While the objective is not reached, the agent will perform a cycle of action (given by the LLM) and observation (obtained from the environment).
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tools: Union[List[Tool], Toolbox],
|
||||
|
@ -378,7 +379,6 @@ class MultiStepAgent:
|
|||
)
|
||||
return rationale.strip(), action.strip()
|
||||
|
||||
|
||||
def provide_final_answer(self, task) -> str:
|
||||
"""
|
||||
This method provides a final answer to the task, based on the logs of the agent's interactions.
|
||||
|
@ -1148,7 +1148,6 @@ class ManagedAgent:
|
|||
|
||||
__all__ = [
|
||||
"AgentError",
|
||||
"BaseAgent",
|
||||
"ManagedAgent",
|
||||
"MultiStepAgent",
|
||||
"CodeAgent",
|
||||
|
|
|
@ -18,11 +18,13 @@ import json
|
|||
import re
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download, list_spaces
|
||||
|
||||
from transformers.utils import is_offline_mode
|
||||
from transformers.models.whisper import WhisperProcessor, WhisperForConditionalGeneration
|
||||
from transformers.models.whisper import (
|
||||
WhisperProcessor,
|
||||
WhisperForConditionalGeneration,
|
||||
)
|
||||
|
||||
from .local_python_executor import (
|
||||
BASE_BUILTIN_MODULES,
|
||||
|
@ -136,10 +138,6 @@ class UserInputTool(Tool):
|
|||
user_input = input(f"{question} => ")
|
||||
return user_input
|
||||
|
||||
import re
|
||||
|
||||
from .tools import Tool
|
||||
|
||||
|
||||
class DuckDuckGoSearchTool(Tool):
|
||||
name = "web_search"
|
||||
|
@ -221,4 +219,11 @@ class SpeechToTextTool(PipelineTool):
|
|||
return self.pre_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
||||
|
||||
|
||||
__all__ = ["PythonInterpreterTool", "FinalAnswerTool", "UserInputTool", "DuckDuckGoSearchTool", "VisitWebpageTool", "SpeechToTextTool"]
|
||||
__all__ = [
|
||||
"PythonInterpreterTool",
|
||||
"FinalAnswerTool",
|
||||
"UserInputTool",
|
||||
"DuckDuckGoSearchTool",
|
||||
"VisitWebpageTool",
|
||||
"SpeechToTextTool",
|
||||
]
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
||||
from .agents import BaseAgent, AgentStep, ActionStep
|
||||
from .agents import MultiStepAgent, AgentStep, ActionStep
|
||||
import gradio as gr
|
||||
|
||||
|
||||
|
@ -83,7 +83,7 @@ def stream_to_gradio(
|
|||
class GradioUI:
|
||||
"""A one-line interface to launch your agent in Gradio"""
|
||||
|
||||
def __init__(self, agent: BaseAgent):
|
||||
def __init__(self, agent: MultiStepAgent):
|
||||
self.agent = agent
|
||||
|
||||
def interact_with_agent(self, prompt, messages):
|
||||
|
|
|
@ -20,6 +20,7 @@ import inspect
|
|||
import json
|
||||
import os
|
||||
import tempfile
|
||||
import torch
|
||||
import textwrap
|
||||
from functools import lru_cache, wraps
|
||||
from pathlib import Path
|
||||
|
@ -42,6 +43,7 @@ from transformers.utils import (
|
|||
is_torch_available,
|
||||
)
|
||||
from transformers.dynamic_module_utils import get_imports
|
||||
from transformers import AutoProcessor
|
||||
|
||||
from .types import ImageType, handle_agent_input_types, handle_agent_output_types
|
||||
from .utils import instance_to_source
|
||||
|
@ -753,7 +755,7 @@ def launch_gradio_demo(tool: Tool):
|
|||
TOOL_MAPPING = {
|
||||
"python_interpreter": "PythonInterpreterTool",
|
||||
"web_search": "DuckDuckGoSearchTool",
|
||||
"transcriber": "SpeechToTextTool"
|
||||
"transcriber": "SpeechToTextTool",
|
||||
}
|
||||
|
||||
|
||||
|
@ -1004,8 +1006,6 @@ class Toolbox:
|
|||
toolbox_description += f"\t{tool.name}: {tool.description}\n"
|
||||
return toolbox_description
|
||||
|
||||
from transformers import AutoProcessor
|
||||
from .types import handle_agent_input_types, handle_agent_output_types
|
||||
|
||||
class PipelineTool(Tool):
|
||||
"""
|
||||
|
@ -1073,7 +1073,9 @@ class PipelineTool(Tool):
|
|||
|
||||
if model is None:
|
||||
if self.default_checkpoint is None:
|
||||
raise ValueError("This tool does not implement a default checkpoint, you need to pass one.")
|
||||
raise ValueError(
|
||||
"This tool does not implement a default checkpoint, you need to pass one."
|
||||
)
|
||||
model = self.default_checkpoint
|
||||
if pre_processor is None:
|
||||
pre_processor = model
|
||||
|
@ -1098,15 +1100,21 @@ class PipelineTool(Tool):
|
|||
from accelerate import PartialState
|
||||
|
||||
if isinstance(self.pre_processor, str):
|
||||
self.pre_processor = self.pre_processor_class.from_pretrained(self.pre_processor, **self.hub_kwargs)
|
||||
self.pre_processor = self.pre_processor_class.from_pretrained(
|
||||
self.pre_processor, **self.hub_kwargs
|
||||
)
|
||||
|
||||
if isinstance(self.model, str):
|
||||
self.model = self.model_class.from_pretrained(self.model, **self.model_kwargs, **self.hub_kwargs)
|
||||
self.model = self.model_class.from_pretrained(
|
||||
self.model, **self.model_kwargs, **self.hub_kwargs
|
||||
)
|
||||
|
||||
if self.post_processor is None:
|
||||
self.post_processor = self.pre_processor
|
||||
elif isinstance(self.post_processor, str):
|
||||
self.post_processor = self.post_processor_class.from_pretrained(self.post_processor, **self.hub_kwargs)
|
||||
self.post_processor = self.post_processor_class.from_pretrained(
|
||||
self.post_processor, **self.hub_kwargs
|
||||
)
|
||||
|
||||
if self.device is None:
|
||||
if self.device_map is not None:
|
||||
|
@ -1149,8 +1157,12 @@ class PipelineTool(Tool):
|
|||
import torch
|
||||
from accelerate.utils import send_to_device
|
||||
|
||||
tensor_inputs = {k: v for k, v in encoded_inputs.items() if isinstance(v, torch.Tensor)}
|
||||
non_tensor_inputs = {k: v for k, v in encoded_inputs.items() if not isinstance(v, torch.Tensor)}
|
||||
tensor_inputs = {
|
||||
k: v for k, v in encoded_inputs.items() if isinstance(v, torch.Tensor)
|
||||
}
|
||||
non_tensor_inputs = {
|
||||
k: v for k, v in encoded_inputs.items() if not isinstance(v, torch.Tensor)
|
||||
}
|
||||
|
||||
encoded_inputs = send_to_device(tensor_inputs, self.device)
|
||||
outputs = self.forward({**encoded_inputs, **non_tensor_inputs})
|
||||
|
@ -1159,6 +1171,7 @@ class PipelineTool(Tool):
|
|||
|
||||
return handle_agent_output_types(decoded_outputs, self.output_type)
|
||||
|
||||
|
||||
__all__ = [
|
||||
"AUTHORIZED_TYPES",
|
||||
"Tool",
|
||||
|
|
Loading…
Reference in New Issue