private-gpt/private_gpt/server/chat/chat_service.py

121 lines
4.6 KiB
Python

from injector import inject, singleton
from llama_index import ServiceContext, StorageContext, VectorStoreIndex
from llama_index.chat_engine import ContextChatEngine
from llama_index.chat_engine.types import (
BaseChatEngine,
)
from llama_index.indices.postprocessor import MetadataReplacementPostProcessor
from llama_index.llm_predictor.utils import stream_chat_response_to_tokens
from llama_index.llms import ChatMessage
from llama_index.types import TokenGen
from pydantic import BaseModel
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
from private_gpt.components.llm.llm_component import LLMComponent
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
from private_gpt.components.vector_store.vector_store_component import (
VectorStoreComponent,
)
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.chunks.chunks_service import Chunk
class Completion(BaseModel):
response: str
sources: list[Chunk] | None = None
class CompletionGen(BaseModel):
response: TokenGen
sources: list[Chunk] | None = None
@singleton
class ChatService:
@inject
def __init__(
self,
llm_component: LLMComponent,
vector_store_component: VectorStoreComponent,
embedding_component: EmbeddingComponent,
node_store_component: NodeStoreComponent,
) -> None:
self.llm_service = llm_component
self.vector_store_component = vector_store_component
self.storage_context = StorageContext.from_defaults(
vector_store=vector_store_component.vector_store,
docstore=node_store_component.doc_store,
index_store=node_store_component.index_store,
)
self.service_context = ServiceContext.from_defaults(
llm=llm_component.llm, embed_model=embedding_component.embedding_model
)
self.index = VectorStoreIndex.from_vector_store(
vector_store_component.vector_store,
storage_context=self.storage_context,
service_context=self.service_context,
show_progress=True,
)
def _chat_engine(
self, context_filter: ContextFilter | None = None
) -> BaseChatEngine:
vector_index_retriever = self.vector_store_component.get_retriever(
index=self.index, context_filter=context_filter
)
return ContextChatEngine.from_defaults(
retriever=vector_index_retriever,
service_context=self.service_context,
node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window"),
],
)
def stream_chat(
self,
messages: list[ChatMessage],
use_context: bool = False,
context_filter: ContextFilter | None = None,
) -> CompletionGen:
if use_context:
last_message = messages[-1].content
chat_engine = self._chat_engine(context_filter=context_filter)
streaming_response = chat_engine.stream_chat(
message=last_message if last_message is not None else "",
chat_history=messages[:-1],
)
sources = [
Chunk.from_node(node) for node in streaming_response.source_nodes
]
completion_gen = CompletionGen(
response=streaming_response.response_gen, sources=sources
)
else:
stream = self.llm_service.llm.stream_chat(messages)
completion_gen = CompletionGen(
response=stream_chat_response_to_tokens(stream)
)
return completion_gen
def chat(
self,
messages: list[ChatMessage],
use_context: bool = False,
context_filter: ContextFilter | None = None,
) -> Completion:
if use_context:
last_message = messages[-1].content
chat_engine = self._chat_engine(context_filter=context_filter)
wrapped_response = chat_engine.chat(
message=last_message if last_message is not None else "",
chat_history=messages[:-1],
)
sources = [Chunk.from_node(node) for node in wrapped_response.source_nodes]
completion = Completion(response=wrapped_response.response, sources=sources)
else:
chat_response = self.llm_service.llm.chat(messages)
response_content = chat_response.message.content
response = response_content if response_content is not None else ""
completion = Completion(response=response)
return completion