160 lines
4.7 KiB
Python
160 lines
4.7 KiB
Python
"""Wrapper for the GPT4All model."""
|
|
from functools import partial
|
|
from typing import Any, Dict, List, Mapping, Optional, Set
|
|
|
|
from pydantic import Extra, Field, root_validator
|
|
|
|
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
|
from langchain.llms.base import LLM
|
|
from langchain.llms.utils import enforce_stop_tokens
|
|
|
|
|
|
class GPT4All_J(LLM):
|
|
r"""Wrapper around GPT4All-J language models.
|
|
|
|
To use, you should have the ``pygpt4all`` python package installed, the
|
|
pre-trained model file, and the model's config information.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain.llms import GPT4All_J
|
|
model = GPT4All_J(model="./models/gpt4all-model.bin")
|
|
|
|
# Simplest invocation
|
|
response = model("Once upon a time, ")
|
|
"""
|
|
|
|
model: str
|
|
"""Path to the pre-trained GPT4All model file."""
|
|
|
|
n_threads: Optional[int] = Field(4, alias="n_threads")
|
|
"""Number of threads to use."""
|
|
|
|
n_predict: Optional[int] = 256
|
|
"""The maximum number of tokens to generate."""
|
|
|
|
temp: Optional[float] = 0.8
|
|
"""The temperature to use for sampling."""
|
|
|
|
top_p: Optional[float] = 0.95
|
|
"""The top-p value to use for sampling."""
|
|
|
|
top_k: Optional[int] = 40
|
|
"""The top-k value to use for sampling."""
|
|
|
|
echo: Optional[bool] = False
|
|
"""Whether to echo the prompt."""
|
|
|
|
stop: Optional[List[str]] = []
|
|
"""A list of strings to stop generation when encountered."""
|
|
|
|
repeat_last_n: Optional[int] = 64
|
|
"Last n tokens to penalize"
|
|
|
|
repeat_penalty: Optional[float] = 1.3
|
|
"""The penalty to apply to repeated tokens."""
|
|
|
|
n_batch: int = Field(1, alias="n_batch")
|
|
"""Batch size for prompt processing."""
|
|
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
|
|
client: Any = None #: :meta private:
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"seed": self.seed,
|
|
"n_predict": self.n_predict,
|
|
"n_threads": self.n_threads,
|
|
"n_batch": self.n_batch,
|
|
"repeat_last_n": self.repeat_last_n,
|
|
"repeat_penalty": self.repeat_penalty,
|
|
"top_k": self.top_k,
|
|
"top_p": self.top_p,
|
|
"temp": self.temp,
|
|
}
|
|
|
|
@staticmethod
|
|
def _llama_param_names() -> Set[str]:
|
|
"""Get the identifying parameters."""
|
|
return {}
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that the python package exists in the environment."""
|
|
try:
|
|
from pygpt4all.models.gpt4all_j import GPT4All_J as GPT4AllModel
|
|
|
|
llama_keys = cls._llama_param_names()
|
|
model_kwargs = {k: v for k, v in values.items() if k in llama_keys}
|
|
values["client"] = GPT4AllModel(
|
|
model_path=values["model"],
|
|
**model_kwargs,
|
|
)
|
|
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import pygpt4all python package. "
|
|
"Please install it with `pip install pygpt4all`."
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"model": self.model,
|
|
**self._default_params,
|
|
**{
|
|
k: v
|
|
for k, v in self.__dict__.items()
|
|
if k in GPT4All._llama_param_names()
|
|
},
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return the type of llm."""
|
|
return "gpt4all"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
) -> str:
|
|
r"""Call out to GPT4All's generate method.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: A list of strings to stop generation when encountered.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
prompt = "Once upon a time, "
|
|
response = model(prompt, n_predict=55)
|
|
"""
|
|
if run_manager:
|
|
text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose)
|
|
text = self.client.generate(
|
|
prompt,
|
|
new_text_callback=text_callback
|
|
)
|
|
else:
|
|
text = self.client.generate(prompt)
|
|
if stop is not None:
|
|
text = enforce_stop_tokens(text, stop)
|
|
return text |