37 lines
1.5 KiB
Python
37 lines
1.5 KiB
Python
import os
|
|
from dotenv import load_dotenv
|
|
from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain.vectorstores import Chroma
|
|
from langchain.embeddings import LlamaCppEmbeddings
|
|
from constants import PERSIST_DIRECTORY
|
|
from constants import CHROMA_SETTINGS
|
|
|
|
load_dotenv()
|
|
|
|
def main():
|
|
llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL')
|
|
persist_directory = os.environ.get('PERSIST_DIRECTORY')
|
|
model_n_ctx = os.environ.get('MODEL_N_CTX')
|
|
# Load document and split in chunks
|
|
for root, dirs, files in os.walk("source_documents"):
|
|
for file in files:
|
|
if file.endswith(".txt"):
|
|
loader = TextLoader(os.path.join(root, file), encoding="utf8")
|
|
elif file.endswith(".pdf"):
|
|
loader = PDFMinerLoader(os.path.join(root, file))
|
|
elif file.endswith(".csv"):
|
|
loader = CSVLoader(os.path.join(root, file))
|
|
documents = loader.load()
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
|
texts = text_splitter.split_documents(documents)
|
|
# Create embeddings
|
|
llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
|
|
# Create and store locally vectorstore
|
|
db = Chroma.from_documents(texts, llama, persist_directory=PERSIST_DIRECTORY, client_settings=CHROMA_SETTINGS)
|
|
db.persist()
|
|
db = None
|
|
|
|
if __name__ == "__main__":
|
|
main()
|