private-gpt/private_gpt/server/ingest/ingest_service.py

160 lines
6.1 KiB
Python

import tempfile
from pathlib import Path
from typing import TYPE_CHECKING, Any, AnyStr
from injector import inject, singleton
from llama_index import (
Document,
ServiceContext,
StorageContext,
StringIterableReader,
VectorStoreIndex,
)
from llama_index.node_parser import SentenceWindowNodeParser
from llama_index.readers.file.base import DEFAULT_FILE_READER_CLS
from pydantic import BaseModel, Field
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
from private_gpt.components.llm.llm_component import LLMComponent
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
from private_gpt.components.vector_store.vector_store_component import (
VectorStoreComponent,
)
from private_gpt.paths import local_data_path
if TYPE_CHECKING:
from llama_index.readers.base import BaseReader
class IngestedDoc(BaseModel):
object: str = Field(enum=["ingest.document"])
doc_id: str = Field(examples=["c202d5e6-7b69-4869-81cc-dd574ee8ee11"])
doc_metadata: dict[str, Any] | None = Field(
examples=[
{
"page_label": "2",
"file_name": "Sales Report Q3 2023.pdf",
}
]
)
@staticmethod
def curate_metadata(metadata: dict[str, Any]) -> dict[str, Any]:
"""Remove unwanted metadata keys."""
metadata.pop("doc_id", None)
metadata.pop("window", None)
metadata.pop("original_text", None)
return metadata
@singleton
class IngestService:
@inject
def __init__(
self,
llm_component: LLMComponent,
vector_store_component: VectorStoreComponent,
embedding_component: EmbeddingComponent,
node_store_component: NodeStoreComponent,
) -> None:
self.llm_service = llm_component
self.storage_context = StorageContext.from_defaults(
vector_store=vector_store_component.vector_store,
docstore=node_store_component.doc_store,
index_store=node_store_component.index_store,
)
self.ingest_service_context = ServiceContext.from_defaults(
llm=self.llm_service.llm,
embed_model=embedding_component.embedding_model,
node_parser=SentenceWindowNodeParser.from_defaults(),
)
def ingest(self, file_name: str, file_data: AnyStr | Path) -> list[IngestedDoc]:
extension = Path(file_name).suffix
reader_cls = DEFAULT_FILE_READER_CLS.get(extension)
documents: list[Document]
if reader_cls is None:
# Read as a plain text
string_reader = StringIterableReader()
if isinstance(file_data, Path):
text = file_data.read_text()
documents = string_reader.load_data([text])
elif isinstance(file_data, bytes):
documents = string_reader.load_data([file_data.decode("utf-8")])
elif isinstance(file_data, str):
documents = string_reader.load_data([file_data])
else:
raise ValueError(f"Unsupported data type {type(file_data)}")
else:
reader: BaseReader = reader_cls()
if isinstance(file_data, Path):
# Already a path, nothing to do
documents = reader.load_data(file_data)
else:
# llama-index mainly supports reading from files, so
# we have to create a tmp file to read for it to work
with tempfile.NamedTemporaryFile() as tmp:
path_to_tmp = Path(tmp.name)
if isinstance(file_data, bytes):
path_to_tmp.write_bytes(file_data)
else:
path_to_tmp.write_text(str(file_data))
documents = reader.load_data(path_to_tmp)
for document in documents:
document.metadata["file_name"] = file_name
return self._save_docs(documents)
def _save_docs(self, documents: list[Document]) -> list[IngestedDoc]:
for document in documents:
document.metadata["doc_id"] = document.doc_id
# We don't want the Embeddings search to receive this metadata
document.excluded_embed_metadata_keys = ["doc_id"]
# We don't want the LLM to receive these metadata in the context
document.excluded_llm_metadata_keys = ["file_name", "doc_id", "page_label"]
# create vectorStore index
VectorStoreIndex.from_documents(
documents,
storage_context=self.storage_context,
service_context=self.ingest_service_context,
store_nodes_override=True, # Force store nodes in index and document stores
show_progress=True,
)
# persist the index and nodes
self.storage_context.persist(persist_dir=local_data_path)
return [
IngestedDoc(
object="ingest.document",
doc_id=document.doc_id,
doc_metadata=IngestedDoc.curate_metadata(document.metadata),
)
for document in documents
]
def list_ingested(self) -> list[IngestedDoc]:
ingested_docs = []
try:
docstore = self.storage_context.docstore
ingested_docs_ids: set[str] = set()
for node in docstore.docs.values():
if node.ref_doc_id is not None:
ingested_docs_ids.add(node.ref_doc_id)
for doc_id in ingested_docs_ids:
ref_doc_info = docstore.get_ref_doc_info(ref_doc_id=doc_id)
doc_metadata = None
if ref_doc_info is not None and ref_doc_info.metadata is not None:
doc_metadata = IngestedDoc.curate_metadata(ref_doc_info.metadata)
ingested_docs.append(
IngestedDoc(
object="ingest.document",
doc_id=doc_id,
doc_metadata=doc_metadata,
)
)
return ingested_docs
except ValueError:
pass
return ingested_docs