private-gpt/private_gpt/server/completions/completions_router.py

67 lines
2.2 KiB
Python

from fastapi import APIRouter
from pydantic import BaseModel
from starlette.responses import StreamingResponse
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.open_ai.openai_models import (
OpenAICompletion,
OpenAIMessage,
)
from private_gpt.server.chat.chat_router import ChatBody, chat_completion
completions_router = APIRouter(prefix="/v1")
class CompletionsBody(BaseModel):
prompt: str
use_context: bool = False
context_filter: ContextFilter | None = None
stream: bool = False
model_config = {
"json_schema_extra": {
"examples": [
{
"prompt": "How do you fry an egg?",
"stream": False,
"use_context": False,
}
]
}
}
@completions_router.post(
"/completions",
response_model=None,
summary="Completion",
responses={200: {"model": OpenAICompletion}},
tags=["Contextual Completions"],
)
def prompt_completion(body: CompletionsBody) -> OpenAICompletion | StreamingResponse:
"""We recommend most users use our Chat completions API.
Given a prompt, the model will return one predicted completion. If `use_context`
is set to `true`, the model will use context coming from the ingested documents
to create the response. The documents being used can be filtered using the
`context_filter` and passing the document IDs to be used. Ingested documents IDs
can be found using `/ingest/list` endpoint. If you want all ingested documents to
be used, remove `context_filter` altogether.
When using `'stream': true`, the API will return data chunks following [OpenAI's
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
```
{"id":"12345","object":"completion.chunk","created":1694268190,
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
"finish_reason":null}]}
```
"""
message = OpenAIMessage(content=body.prompt, role="user")
chat_body = ChatBody(
messages=[message],
use_context=body.use_context,
stream=body.stream,
context_filter=body.context_filter,
)
return chat_completion(chat_body)