#!/usr/bin/env python3 from dotenv import load_dotenv from langchain.chains import RetrievalQA from langchain.embeddings import HuggingFaceEmbeddings from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.vectorstores import Chroma from langchain.llms import GPT4All, LlamaCpp import chromadb import os import argparse import time if not load_dotenv(): print("Could not load .env file or it is empty. Please check if it exists and is readable.") exit(1) embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME") persist_directory = os.environ.get('PERSIST_DIRECTORY') model_type = os.environ.get('MODEL_TYPE') model_path = os.environ.get('MODEL_PATH') model_n_ctx = os.environ.get('MODEL_N_CTX') model_n_batch = int(os.environ.get('MODEL_N_BATCH',8)) target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4)) from constants import CHROMA_SETTINGS def main(): # Parse the command line arguments args = parse_arguments() embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) chroma_client = chromadb.PersistentClient(settings=CHROMA_SETTINGS , path=persist_directory) db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS, client=chroma_client) retriever = db.as_retriever(search_kwargs={"k": target_source_chunks}) # activate/deactivate the streaming StdOut callback for LLMs callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()] # Prepare the LLM match model_type: case "LlamaCpp": llm = LlamaCpp(model_path=model_path, max_tokens=model_n_ctx, n_batch=model_n_batch, callbacks=callbacks, verbose=False) case "GPT4All": llm = GPT4All(model=model_path, max_tokens=model_n_ctx, backend='gptj', n_batch=model_n_batch, callbacks=callbacks, verbose=False) case _default: # raise exception if model_type is not supported raise Exception(f"Model type {model_type} is not supported. Please choose one of the following: LlamaCpp, GPT4All") qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source) # Interactive questions and answers while True: query = input("\nEnter a query: ") if query == "exit": break if query.strip() == "": continue # Get the answer from the chain start = time.time() res = qa(query) answer, docs = res['result'], [] if args.hide_source else res['source_documents'] end = time.time() # Print the result print("\n\n> Question:") print(query) print(f"\n> Answer (took {round(end - start, 2)} s.):") print(answer) # Print the relevant sources used for the answer for document in docs: print("\n> " + document.metadata["source"] + ":") print(document.page_content) def parse_arguments(): parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, ' 'using the power of LLMs.') parser.add_argument("--hide-source", "-S", action='store_true', help='Use this flag to disable printing of source documents used for answers.') parser.add_argument("--mute-stream", "-M", action='store_true', help='Use this flag to disable the streaming StdOut callback for LLMs.') return parser.parse_args() if __name__ == "__main__": main()