from langchain.document_loaders import TextLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.embeddings import LlamaCppEmbeddings def main(): # Load document and split in chunks loader = TextLoader('./source_documents/state_of_the_union.txt', encoding='utf8') documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) # Create embeddings llama = LlamaCppEmbeddings(model_path="./models/ggml-model-q4_0.bin") # Create and store locally vectorstore persist_directory = 'db' db = Chroma.from_documents(texts, llama, persist_directory=persist_directory) db.persist() db = None if __name__ == "__main__": main()