ingest unlimited number of documents
This commit is contained in:
		
							parent
							
								
									271673ffcc
								
							
						
					
					
						commit
						d0aa57178a
					
				
							
								
								
									
										49
									
								
								ingest.py
								
								
								
								
							
							
						
						
									
										49
									
								
								ingest.py
								
								
								
								
							|  | @ -1,35 +1,62 @@ | ||||||
| import os | import os | ||||||
|  | import glob | ||||||
|  | from typing import List | ||||||
| from dotenv import load_dotenv | from dotenv import load_dotenv | ||||||
|  | 
 | ||||||
| from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader | from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader | ||||||
| from langchain.text_splitter import RecursiveCharacterTextSplitter | from langchain.text_splitter import RecursiveCharacterTextSplitter | ||||||
| from langchain.vectorstores import Chroma | from langchain.vectorstores import Chroma | ||||||
| from langchain.embeddings import LlamaCppEmbeddings | from langchain.embeddings import LlamaCppEmbeddings | ||||||
|  | from langchain.docstore.document import Document | ||||||
| from constants import CHROMA_SETTINGS | from constants import CHROMA_SETTINGS | ||||||
| 
 | 
 | ||||||
|  | 
 | ||||||
| load_dotenv() | load_dotenv() | ||||||
| 
 | 
 | ||||||
|  | 
 | ||||||
|  | def load_single_document(file_path: str) -> Document: | ||||||
|  |     # Loads a single document from a file path | ||||||
|  |     if file_path.endswith(".txt"): | ||||||
|  |         loader = TextLoader(file_path, encoding="utf8") | ||||||
|  |     elif file_path.endswith(".pdf"): | ||||||
|  |         loader = PDFMinerLoader(file_path) | ||||||
|  |     elif file_path.endswith(".csv"): | ||||||
|  |         loader = CSVLoader(file_path) | ||||||
|  |     return loader.load()[0] | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def load_documents(source_dir: str) -> List[Document]: | ||||||
|  |     # Loads all documents from source documents directory | ||||||
|  |     txt_files = glob.glob(os.path.join(source_dir, "**/*.txt"), recursive=True) | ||||||
|  |     pdf_files = glob.glob(os.path.join(source_dir, "**/*.pdf"), recursive=True) | ||||||
|  |     csv_files = glob.glob(os.path.join(source_dir, "**/*.csv"), recursive=True) | ||||||
|  |     all_files = txt_files + pdf_files + csv_files | ||||||
|  |     return [load_single_document(file_path) for file_path in all_files] | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
| def main(): | def main(): | ||||||
|     llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL') |     # Load environment variables | ||||||
|     persist_directory = os.environ.get('PERSIST_DIRECTORY') |     persist_directory = os.environ.get('PERSIST_DIRECTORY') | ||||||
|  |     source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents') | ||||||
|  |     llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL') | ||||||
|     model_n_ctx = os.environ.get('MODEL_N_CTX') |     model_n_ctx = os.environ.get('MODEL_N_CTX') | ||||||
|     # Load document and split in chunks | 
 | ||||||
|     for root, dirs, files in os.walk("source_documents"): |     # Load documents and split in chunks | ||||||
|         for file in files: |     print(f"Loading documents from {source_directory}") | ||||||
|             if file.endswith(".txt"): |     documents = load_documents(source_directory) | ||||||
|                 loader = TextLoader(os.path.join(root, file), encoding="utf8") |  | ||||||
|             elif file.endswith(".pdf"): |  | ||||||
|                 loader = PDFMinerLoader(os.path.join(root, file)) |  | ||||||
|             elif file.endswith(".csv"): |  | ||||||
|                 loader = CSVLoader(os.path.join(root, file)) |  | ||||||
|     documents = loader.load() |  | ||||||
|     text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) |     text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) | ||||||
|     texts = text_splitter.split_documents(documents) |     texts = text_splitter.split_documents(documents) | ||||||
|  |     print(f"Loaded {len(documents)} documents from {source_directory}") | ||||||
|  |     print(f"Split into {len(texts)} chunks of text (max. 500 tokens each)") | ||||||
|  | 
 | ||||||
|     # Create embeddings |     # Create embeddings | ||||||
|     llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx) |     llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx) | ||||||
|  |      | ||||||
|     # Create and store locally vectorstore |     # Create and store locally vectorstore | ||||||
|     db = Chroma.from_documents(texts, llama, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS) |     db = Chroma.from_documents(texts, llama, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS) | ||||||
|     db.persist() |     db.persist() | ||||||
|     db = None |     db = None | ||||||
| 
 | 
 | ||||||
|  | 
 | ||||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||||
|     main() |     main() | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue