Ingestion Speedup Multiple strategy (#1309)

This commit is contained in:
lopagela 2023-11-25 20:12:09 +01:00 committed by GitHub
parent 546ba33e6f
commit bafdd3baf1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 515 additions and 195 deletions

View File

@ -1,3 +1,5 @@
import logging
from injector import inject, singleton from injector import inject, singleton
from llama_index import MockEmbedding from llama_index import MockEmbedding
from llama_index.embeddings.base import BaseEmbedding from llama_index.embeddings.base import BaseEmbedding
@ -5,6 +7,8 @@ from llama_index.embeddings.base import BaseEmbedding
from private_gpt.paths import models_cache_path from private_gpt.paths import models_cache_path
from private_gpt.settings.settings import Settings from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
@singleton @singleton
class EmbeddingComponent: class EmbeddingComponent:
@ -12,7 +16,9 @@ class EmbeddingComponent:
@inject @inject
def __init__(self, settings: Settings) -> None: def __init__(self, settings: Settings) -> None:
match settings.llm.mode: embedding_mode = settings.embedding.mode
logger.info("Initializing the embedding model in mode=%s", embedding_mode)
match embedding_mode:
case "local": case "local":
from llama_index.embeddings import HuggingFaceEmbedding from llama_index.embeddings import HuggingFaceEmbedding

View File

@ -0,0 +1,297 @@
import abc
import itertools
import logging
import multiprocessing
import multiprocessing.pool
import os
import threading
from pathlib import Path
from typing import Any
from llama_index import (
Document,
ServiceContext,
StorageContext,
VectorStoreIndex,
load_index_from_storage,
)
from llama_index.data_structs import IndexDict
from llama_index.indices.base import BaseIndex
from llama_index.ingestion import run_transformations
from private_gpt.components.ingest.ingest_helper import IngestionHelper
from private_gpt.paths import local_data_path
logger = logging.getLogger(__name__)
class BaseIngestComponent(abc.ABC):
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
*args: Any,
**kwargs: Any,
) -> None:
logger.debug("Initializing base ingest component type=%s", type(self).__name__)
self.storage_context = storage_context
self.service_context = service_context
@abc.abstractmethod
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
pass
@abc.abstractmethod
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
pass
@abc.abstractmethod
def delete(self, doc_id: str) -> None:
pass
class BaseIngestComponentWithIndex(BaseIngestComponent, abc.ABC):
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, service_context, *args, **kwargs)
self.show_progress = True
self._index_thread_lock = (
threading.RLock()
) # Thread lock! Not Multiprocessing lock
self._index = self._initialize_index()
def _initialize_index(self) -> BaseIndex[IndexDict]:
"""Initialize the index from the storage context."""
try:
# Load the index with store_nodes_override=True to be able to delete them
index = load_index_from_storage(
storage_context=self.storage_context,
service_context=self.service_context,
store_nodes_override=True, # Force store nodes in index and document stores
show_progress=self.show_progress,
)
except ValueError:
# There are no index in the storage context, creating a new one
logger.info("Creating a new vector store index")
index = VectorStoreIndex.from_documents(
[],
storage_context=self.storage_context,
service_context=self.service_context,
store_nodes_override=True, # Force store nodes in index and document stores
show_progress=self.show_progress,
)
index.storage_context.persist(persist_dir=local_data_path)
return index
def _save_index(self) -> None:
self._index.storage_context.persist(persist_dir=local_data_path)
def delete(self, doc_id: str) -> None:
with self._index_thread_lock:
# Delete the document from the index
self._index.delete_ref_doc(doc_id, delete_from_docstore=True)
# Save the index
self._save_index()
class SimpleIngestComponent(BaseIngestComponentWithIndex):
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, service_context, *args, **kwargs)
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
logger.info("Ingesting file_name=%s", file_name)
documents = IngestionHelper.transform_file_into_documents(file_name, file_data)
logger.info(
"Transformed file=%s into count=%s documents", file_name, len(documents)
)
logger.debug("Saving the documents in the index and doc store")
return self._save_docs(documents)
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
saved_documents = []
for file_name, file_data in files:
documents = IngestionHelper.transform_file_into_documents(
file_name, file_data
)
saved_documents.extend(self._save_docs(documents))
return saved_documents
def _save_docs(self, documents: list[Document]) -> list[Document]:
logger.debug("Transforming count=%s documents into nodes", len(documents))
with self._index_thread_lock:
for document in documents:
self._index.insert(document, show_progress=True)
logger.debug("Persisting the index and nodes")
# persist the index and nodes
self._save_index()
logger.debug("Persisted the index and nodes")
return documents
class MultiWorkerIngestComponent(BaseIngestComponentWithIndex):
"""Parallelize the file reading and parsing on multiple CPU core.
This also makes the embeddings to be computed in batches (on GPU or CPU).
"""
BULK_INGEST_WORKER_NUM = max((os.cpu_count() or 1) - 1, 1)
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, service_context, *args, **kwargs)
# Make an efficient use of the CPU and GPU, the embedding
# must be in the transformations
assert (
len(self.service_context.transformations) >= 2
), "Embeddings must be in the transformations"
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
logger.info("Ingesting file_name=%s", file_name)
documents = IngestionHelper.transform_file_into_documents(file_name, file_data)
logger.info(
"Transformed file=%s into count=%s documents", file_name, len(documents)
)
logger.debug("Saving the documents in the index and doc store")
return self._save_docs(documents)
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
with multiprocessing.Pool(processes=self.BULK_INGEST_WORKER_NUM) as pool:
documents = list(
itertools.chain.from_iterable(
pool.starmap(IngestionHelper.transform_file_into_documents, files)
)
)
logger.info(
"Transformed count=%s files into count=%s documents",
len(files),
len(documents),
)
return self._save_docs(documents)
def _save_docs(self, documents: list[Document]) -> list[Document]:
logger.debug("Transforming count=%s documents into nodes", len(documents))
nodes = run_transformations(
documents, # type: ignore[arg-type]
self.service_context.transformations,
show_progress=self.show_progress,
)
# Locking the index to avoid concurrent writes
with self._index_thread_lock:
logger.debug("Inserting count=%s nodes in the index", len(nodes))
self._index.insert_nodes(nodes, show_progress=True)
for document in documents:
self._index.docstore.set_document_hash(
document.get_doc_id(), document.hash
)
logger.debug("Persisting the index and nodes")
# persist the index and nodes
self._save_index()
logger.debug("Persisted the index and nodes")
return documents
class ParallelizedIngestComponent(BaseIngestComponentWithIndex):
"""Parallelize the file ingestion (file reading, embeddings, and index insertion).
This use the CPU and GPU in parallel (both running at the same time), and
reduce the memory pressure by not loading all the files in memory at the same time.
FIXME: this is not working as well as planned because of the usage of
the multiprocessing worker pool.
"""
BULK_INGEST_WORKER_NUM = max((os.cpu_count() or 1) - 1, 1)
def __init__(
self,
storage_context: StorageContext,
service_context: ServiceContext,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(storage_context, service_context, *args, **kwargs)
# Make an efficient use of the CPU and GPU, the embedding
# must be in the transformations
assert (
len(self.service_context.transformations) >= 2
), "Embeddings must be in the transformations"
# We are doing our own multiprocessing
# To do not collide with the multiprocessing of huggingface, we disable it
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
logger.info("Ingesting file_name=%s", file_name)
# FIXME there are some cases where the process is not finished
# causing deadlocks. More information using trace:
# time PGPT_PROFILES=ingest-local python -m trace --trace \
# ./scripts/ingest_folder.py ... &> ingestion.traces
with multiprocessing.Pool(processes=1) as pool:
# Running in a single (1) process to release the current
# thread, and take a dedicated CPU core for computation
a_documents = pool.apply_async(
IngestionHelper.transform_file_into_documents, (file_name, file_data)
)
while True:
# FIXME ugly hack to highlight the deadlock in traces
try:
documents = list(a_documents.get(timeout=2))
except multiprocessing.TimeoutError:
continue
break
pool.close()
pool.terminate()
logger.info(
"Transformed file=%s into count=%s documents", file_name, len(documents)
)
logger.debug("Saving the documents in the index and doc store")
return self._save_docs(documents)
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
# Lightweight threads, used for parallelize the
# underlying IO calls made in the ingestion
with multiprocessing.pool.ThreadPool(
processes=self.BULK_INGEST_WORKER_NUM
) as pool:
documents = list(
itertools.chain.from_iterable(pool.starmap(self.ingest, files))
)
return documents
def _save_docs(self, documents: list[Document]) -> list[Document]:
logger.debug("Transforming count=%s documents into nodes", len(documents))
nodes = run_transformations(
documents, # type: ignore[arg-type]
self.service_context.transformations,
show_progress=self.show_progress,
)
# Locking the index to avoid concurrent writes
with self._index_thread_lock:
logger.debug("Inserting count=%s nodes in the index", len(nodes))
self._index.insert_nodes(nodes, show_progress=True)
for document in documents:
self._index.docstore.set_document_hash(
document.get_doc_id(), document.hash
)
logger.debug("Persisting the index and nodes")
# persist the index and nodes
self._save_index()
logger.debug("Persisted the index and nodes")
return documents

View File

@ -0,0 +1,61 @@
import logging
from pathlib import Path
from llama_index import Document
from llama_index.readers import JSONReader, StringIterableReader
from llama_index.readers.file.base import DEFAULT_FILE_READER_CLS
logger = logging.getLogger(__name__)
# Patching the default file reader to support other file types
FILE_READER_CLS = DEFAULT_FILE_READER_CLS.copy()
FILE_READER_CLS.update(
{
".json": JSONReader,
}
)
class IngestionHelper:
"""Helper class to transform a file into a list of documents.
This class should be used to transform a file into a list of documents.
These methods are thread-safe (and multiprocessing-safe).
"""
@staticmethod
def transform_file_into_documents(
file_name: str, file_data: Path
) -> list[Document]:
documents = IngestionHelper._load_file_to_documents(file_name, file_data)
for document in documents:
document.metadata["file_name"] = file_name
IngestionHelper._exclude_metadata(documents)
return documents
@staticmethod
def _load_file_to_documents(file_name: str, file_data: Path) -> list[Document]:
logger.debug("Transforming file_name=%s into documents", file_name)
extension = Path(file_name).suffix
reader_cls = FILE_READER_CLS.get(extension)
if reader_cls is None:
logger.debug(
"No reader found for extension=%s, using default string reader",
extension,
)
# Read as a plain text
string_reader = StringIterableReader()
return string_reader.load_data([file_data.read_text()])
logger.debug("Specific reader found for extension=%s", extension)
return reader_cls().load_data(file_data)
@staticmethod
def _exclude_metadata(documents: list[Document]) -> None:
logger.debug("Excluding metadata from count=%s documents", len(documents))
for document in documents:
document.metadata["doc_id"] = document.doc_id
# We don't want the Embeddings search to receive this metadata
document.excluded_embed_metadata_keys = ["doc_id"]
# We don't want the LLM to receive these metadata in the context
document.excluded_llm_metadata_keys = ["file_name", "doc_id", "page_label"]

View File

@ -1,3 +1,5 @@
import logging
from injector import inject, singleton from injector import inject, singleton
from llama_index.llms import MockLLM from llama_index.llms import MockLLM
from llama_index.llms.base import LLM from llama_index.llms.base import LLM
@ -6,6 +8,8 @@ from private_gpt.components.llm.prompt_helper import get_prompt_style
from private_gpt.paths import models_path from private_gpt.paths import models_path
from private_gpt.settings.settings import Settings from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
@singleton @singleton
class LLMComponent: class LLMComponent:
@ -13,6 +17,8 @@ class LLMComponent:
@inject @inject
def __init__(self, settings: Settings) -> None: def __init__(self, settings: Settings) -> None:
llm_mode = settings.llm.mode
logger.info("Initializing the LLM in mode=%s", llm_mode)
match settings.llm.mode: match settings.llm.mode:
case "local": case "local":
from llama_index.llms import LlamaCPP from llama_index.llms import LlamaCPP

View File

@ -12,7 +12,7 @@ from private_gpt.components.vector_store.vector_store_component import (
VectorStoreComponent, VectorStoreComponent,
) )
from private_gpt.open_ai.extensions.context_filter import ContextFilter from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.ingest.ingest_service import IngestedDoc from private_gpt.server.ingest.model import IngestedDoc
if TYPE_CHECKING: if TYPE_CHECKING:
from llama_index.schema import RelatedNodeInfo from llama_index.schema import RelatedNodeInfo

View File

@ -3,7 +3,8 @@ from typing import Literal
from fastapi import APIRouter, Depends, HTTPException, Request, UploadFile from fastapi import APIRouter, Depends, HTTPException, Request, UploadFile
from pydantic import BaseModel from pydantic import BaseModel
from private_gpt.server.ingest.ingest_service import IngestedDoc, IngestService from private_gpt.server.ingest.ingest_service import IngestService
from private_gpt.server.ingest.model import IngestedDoc
from private_gpt.server.utils.auth import authenticated from private_gpt.server.utils.auth import authenticated
ingest_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)]) ingest_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
@ -35,7 +36,7 @@ def ingest(request: Request, file: UploadFile) -> IngestResponse:
service = request.state.injector.get(IngestService) service = request.state.injector.get(IngestService)
if file.filename is None: if file.filename is None:
raise HTTPException(400, "No file name provided") raise HTTPException(400, "No file name provided")
ingested_documents = service.ingest(file.filename, file.file.read()) ingested_documents = service.ingest_bin_data(file.filename, file.file)
return IngestResponse(object="list", model="private-gpt", data=ingested_documents) return IngestResponse(object="list", model="private-gpt", data=ingested_documents)

View File

@ -1,64 +1,27 @@
import logging import logging
import tempfile import tempfile
from pathlib import Path from pathlib import Path
from typing import TYPE_CHECKING, Any, AnyStr, Literal from typing import BinaryIO
from injector import inject, singleton from injector import inject, singleton
from llama_index import ( from llama_index import (
Document,
ServiceContext, ServiceContext,
StorageContext, StorageContext,
VectorStoreIndex,
load_index_from_storage,
) )
from llama_index.node_parser import SentenceWindowNodeParser from llama_index.node_parser import SentenceWindowNodeParser
from llama_index.readers import JSONReader, StringIterableReader
from llama_index.readers.file.base import DEFAULT_FILE_READER_CLS
from pydantic import BaseModel, Field
from private_gpt.components.embedding.embedding_component import EmbeddingComponent from private_gpt.components.embedding.embedding_component import EmbeddingComponent
from private_gpt.components.ingest.ingest_component import SimpleIngestComponent
from private_gpt.components.llm.llm_component import LLMComponent from private_gpt.components.llm.llm_component import LLMComponent
from private_gpt.components.node_store.node_store_component import NodeStoreComponent from private_gpt.components.node_store.node_store_component import NodeStoreComponent
from private_gpt.components.vector_store.vector_store_component import ( from private_gpt.components.vector_store.vector_store_component import (
VectorStoreComponent, VectorStoreComponent,
) )
from private_gpt.paths import local_data_path from private_gpt.server.ingest.model import IngestedDoc
if TYPE_CHECKING:
from llama_index.readers.base import BaseReader
# Patching the default file reader to support other file types
FILE_READER_CLS = DEFAULT_FILE_READER_CLS.copy()
FILE_READER_CLS.update(
{
".json": JSONReader,
}
)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
class IngestedDoc(BaseModel):
object: Literal["ingest.document"]
doc_id: str = Field(examples=["c202d5e6-7b69-4869-81cc-dd574ee8ee11"])
doc_metadata: dict[str, Any] | None = Field(
examples=[
{
"page_label": "2",
"file_name": "Sales Report Q3 2023.pdf",
}
]
)
@staticmethod
def curate_metadata(metadata: dict[str, Any]) -> dict[str, Any]:
"""Remove unwanted metadata keys."""
metadata.pop("doc_id", None)
metadata.pop("window", None)
metadata.pop("original_text", None)
return metadata
@singleton @singleton
class IngestService: class IngestService:
@inject @inject
@ -75,99 +38,50 @@ class IngestService:
docstore=node_store_component.doc_store, docstore=node_store_component.doc_store,
index_store=node_store_component.index_store, index_store=node_store_component.index_store,
) )
node_parser = SentenceWindowNodeParser.from_defaults()
self.ingest_service_context = ServiceContext.from_defaults( self.ingest_service_context = ServiceContext.from_defaults(
llm=self.llm_service.llm, llm=self.llm_service.llm,
embed_model=embedding_component.embedding_model, embed_model=embedding_component.embedding_model,
node_parser=SentenceWindowNodeParser.from_defaults(), node_parser=node_parser,
# Embeddings done early in the pipeline of node transformations, right
# after the node parsing
transformations=[node_parser, embedding_component.embedding_model],
) )
def ingest(self, file_name: str, file_data: AnyStr | Path) -> list[IngestedDoc]: self.ingest_component = SimpleIngestComponent(
self.storage_context, self.ingest_service_context
)
def ingest(self, file_name: str, file_data: Path) -> list[IngestedDoc]:
logger.info("Ingesting file_name=%s", file_name) logger.info("Ingesting file_name=%s", file_name)
extension = Path(file_name).suffix documents = self.ingest_component.ingest(file_name, file_data)
reader_cls = FILE_READER_CLS.get(extension) return [IngestedDoc.from_document(document) for document in documents]
documents: list[Document]
if reader_cls is None:
logger.debug(
"No reader found for extension=%s, using default string reader",
extension,
)
# Read as a plain text
string_reader = StringIterableReader()
if isinstance(file_data, Path):
text = file_data.read_text()
documents = string_reader.load_data([text])
elif isinstance(file_data, bytes):
documents = string_reader.load_data([file_data.decode("utf-8")])
elif isinstance(file_data, str):
documents = string_reader.load_data([file_data])
else:
raise ValueError(f"Unsupported data type {type(file_data)}")
else:
logger.debug("Specific reader found for extension=%s", extension)
reader: BaseReader = reader_cls()
if isinstance(file_data, Path):
# Already a path, nothing to do
documents = reader.load_data(file_data)
else:
# llama-index mainly supports reading from files, so
# we have to create a tmp file to read for it to work
# delete=False to avoid a Windows 11 permission error.
with tempfile.NamedTemporaryFile(delete=False) as tmp:
try:
path_to_tmp = Path(tmp.name)
if isinstance(file_data, bytes):
path_to_tmp.write_bytes(file_data)
else:
path_to_tmp.write_text(str(file_data))
documents = reader.load_data(path_to_tmp)
finally:
tmp.close()
path_to_tmp.unlink()
logger.info(
"Transformed file=%s into count=%s documents", file_name, len(documents)
)
for document in documents:
document.metadata["file_name"] = file_name
return self._save_docs(documents)
def _save_docs(self, documents: list[Document]) -> list[IngestedDoc]: def ingest_bin_data(
for document in documents: self, file_name: str, raw_file_data: BinaryIO
document.metadata["doc_id"] = document.doc_id ) -> list[IngestedDoc]:
# We don't want the Embeddings search to receive this metadata logger.debug("Ingesting binary data with file_name=%s", file_name)
document.excluded_embed_metadata_keys = ["doc_id"] file_data = raw_file_data.read()
# We don't want the LLM to receive these metadata in the context logger.debug("Got file data of size=%s to ingest", len(file_data))
document.excluded_llm_metadata_keys = ["file_name", "doc_id", "page_label"] # llama-index mainly supports reading from files, so
# we have to create a tmp file to read for it to work
# delete=False to avoid a Windows 11 permission error.
with tempfile.NamedTemporaryFile(delete=False) as tmp:
try:
path_to_tmp = Path(tmp.name)
if isinstance(file_data, bytes):
path_to_tmp.write_bytes(file_data)
else:
path_to_tmp.write_text(str(file_data))
return self.ingest(file_name, path_to_tmp)
finally:
tmp.close()
path_to_tmp.unlink()
try: def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[IngestedDoc]:
# Load the index from storage and insert new documents, logger.info("Ingesting file_names=%s", [f[0] for f in files])
index = load_index_from_storage( documents = self.ingest_component.bulk_ingest(files)
storage_context=self.storage_context, return [IngestedDoc.from_document(document) for document in documents]
service_context=self.ingest_service_context,
store_nodes_override=True, # Force store nodes in index and document stores
show_progress=True,
)
for doc in documents:
index.insert(doc)
except ValueError:
# Or create a new one if there is none
VectorStoreIndex.from_documents(
documents,
storage_context=self.storage_context,
service_context=self.ingest_service_context,
store_nodes_override=True, # Force store nodes in index and document stores
show_progress=True,
)
# persist the index and nodes
self.storage_context.persist(persist_dir=local_data_path)
return [
IngestedDoc(
object="ingest.document",
doc_id=document.doc_id,
doc_metadata=IngestedDoc.curate_metadata(document.metadata),
)
for document in documents
]
def list_ingested(self) -> list[IngestedDoc]: def list_ingested(self) -> list[IngestedDoc]:
ingested_docs = [] ingested_docs = []
@ -205,17 +119,4 @@ class IngestService:
logger.info( logger.info(
"Deleting the ingested document=%s in the doc and index store", doc_id "Deleting the ingested document=%s in the doc and index store", doc_id
) )
self.ingest_component.delete(doc_id)
# Load the index with store_nodes_override=True to be able to delete them
index = load_index_from_storage(
storage_context=self.storage_context,
service_context=self.ingest_service_context,
store_nodes_override=True, # Force store nodes in index and document stores
show_progress=True,
)
# Delete the document from the index
index.delete_ref_doc(doc_id, delete_from_docstore=True)
# Save the index
self.storage_context.persist(persist_dir=local_data_path)

View File

@ -0,0 +1,32 @@
from typing import Any, Literal
from llama_index import Document
from pydantic import BaseModel, Field
class IngestedDoc(BaseModel):
object: Literal["ingest.document"]
doc_id: str = Field(examples=["c202d5e6-7b69-4869-81cc-dd574ee8ee11"])
doc_metadata: dict[str, Any] | None = Field(
examples=[
{
"page_label": "2",
"file_name": "Sales Report Q3 2023.pdf",
}
]
)
@staticmethod
def curate_metadata(metadata: dict[str, Any]) -> dict[str, Any]:
"""Remove unwanted metadata keys."""
for key in ["doc_id", "window", "original_text"]:
metadata.pop(key, None)
return metadata
@staticmethod
def from_document(document: Document) -> "IngestedDoc":
return IngestedDoc(
object="ingest.document",
doc_id=document.doc_id,
doc_metadata=IngestedDoc.curate_metadata(document.metadata),
)

View File

@ -115,6 +115,10 @@ class LocalSettings(BaseModel):
) )
class EmbeddingSettings(BaseModel):
mode: Literal["local", "openai", "sagemaker", "mock"]
class SagemakerSettings(BaseModel): class SagemakerSettings(BaseModel):
llm_endpoint_name: str llm_endpoint_name: str
embedding_endpoint_name: str embedding_endpoint_name: str
@ -188,6 +192,7 @@ class Settings(BaseModel):
data: DataSettings data: DataSettings
ui: UISettings ui: UISettings
llm: LLMSettings llm: LLMSettings
embedding: EmbeddingSettings
local: LocalSettings local: LocalSettings
sagemaker: SagemakerSettings sagemaker: SagemakerSettings
openai: OpenAISettings openai: OpenAISettings

View File

@ -157,10 +157,8 @@ class PrivateGptUi:
def _upload_file(self, files: list[str]) -> None: def _upload_file(self, files: list[str]) -> None:
logger.debug("Loading count=%s files", len(files)) logger.debug("Loading count=%s files", len(files))
for file in files: paths = [Path(file) for file in files]
logger.info("Loading file=%s", file) self._ingest_service.bulk_ingest([(str(path.name), path) for path in paths])
path = Path(file)
self._ingest_service.ingest(file_name=path.name, file_data=path)
def _build_ui_blocks(self) -> gr.Blocks: def _build_ui_blocks(self) -> gr.Blocks:
logger.debug("Creating the UI blocks") logger.debug("Creating the UI blocks")

106
scripts/ingest_folder.py Normal file → Executable file
View File

@ -1,3 +1,5 @@
#!/usr/bin/env python3
import argparse import argparse
import logging import logging
from pathlib import Path from pathlib import Path
@ -8,7 +10,51 @@ from private_gpt.server.ingest.ingest_watcher import IngestWatcher
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
ingest_service = global_injector.get(IngestService)
class LocalIngestWorker:
def __init__(self, ingest_service: IngestService) -> None:
self.ingest_service = ingest_service
self.total_documents = 0
self.current_document_count = 0
self._files_under_root_folder: list[Path] = list()
def _find_all_files_in_folder(self, root_path: Path) -> None:
"""Search all files under the root folder recursively.
Count them at the same time
"""
for file_path in root_path.iterdir():
if file_path.is_file():
self.total_documents += 1
self._files_under_root_folder.append(file_path)
elif file_path.is_dir():
self._find_all_files_in_folder(file_path)
def ingest_folder(self, folder_path: Path) -> None:
# Count total documents before ingestion
self._find_all_files_in_folder(folder_path)
self._ingest_all(self._files_under_root_folder)
def _ingest_all(self, files_to_ingest: list[Path]) -> None:
logger.info("Ingesting files=%s", [f.name for f in files_to_ingest])
self.ingest_service.bulk_ingest([(str(p.name), p) for p in files_to_ingest])
def ingest_on_watch(self, changed_path: Path) -> None:
logger.info("Detected change in at path=%s, ingesting", changed_path)
self._do_ingest_one(changed_path)
def _do_ingest_one(self, changed_path: Path) -> None:
try:
if changed_path.exists():
logger.info(f"Started ingesting file={changed_path}")
self.ingest_service.ingest(changed_path.name, changed_path)
logger.info(f"Completed ingesting file={changed_path}")
except Exception:
logger.exception(
f"Failed to ingest document: {changed_path}, find the exception attached"
)
parser = argparse.ArgumentParser(prog="ingest_folder.py") parser = argparse.ArgumentParser(prog="ingest_folder.py")
parser.add_argument("folder", help="Folder to ingest") parser.add_argument("folder", help="Folder to ingest")
@ -37,53 +83,17 @@ if args.log_file:
) )
logger.addHandler(file_handler) logger.addHandler(file_handler)
if __name__ == "__main__":
total_documents = 0 root_path = Path(args.folder)
current_document_count = 0 if not root_path.exists():
raise ValueError(f"Path {args.folder} does not exist")
ingest_service = global_injector.get(IngestService)
worker = LocalIngestWorker(ingest_service)
worker.ingest_folder(root_path)
def count_documents(folder_path: Path) -> None: if args.watch:
global total_documents logger.info(f"Watching {args.folder} for changes, press Ctrl+C to stop...")
for file_path in folder_path.iterdir(): watcher = IngestWatcher(args.folder, worker.ingest_on_watch)
if file_path.is_file(): watcher.start()
total_documents += 1
elif file_path.is_dir():
count_documents(file_path)
def _recursive_ingest_folder(folder_path: Path) -> None:
global current_document_count, total_documents
for file_path in folder_path.iterdir():
if file_path.is_file():
current_document_count += 1
progress_msg = f"Document {current_document_count} of {total_documents} ({(current_document_count / total_documents) * 100:.2f}%)"
logger.info(progress_msg)
_do_ingest(file_path)
elif file_path.is_dir():
_recursive_ingest_folder(file_path)
def _do_ingest(changed_path: Path) -> None:
try:
if changed_path.exists():
logger.info(f"Started ingesting {changed_path}")
ingest_service.ingest(changed_path.name, changed_path)
logger.info(f"Completed ingesting {changed_path}")
except Exception:
logger.exception(
f"Failed to ingest document: {changed_path}, find the exception attached"
)
path = Path(args.folder)
if not path.exists():
raise ValueError(f"Path {args.folder} does not exist")
# Count total documents before ingestion
count_documents(path)
_recursive_ingest_folder(path)
if args.watch:
logger.info(f"Watching {args.folder} for changes, press Ctrl+C to stop...")
watcher = IngestWatcher(args.folder, _do_ingest)
watcher.start()

View File

@ -22,6 +22,9 @@ ui:
llm: llm:
mode: local mode: local
embedding:
# Should be matching the value above in most cases
mode: local
vectorstore: vectorstore:
database: qdrant database: qdrant