Merge pull request #74 from andreakiro/fix/load-documents

Ingest unlimited number of documents
This commit is contained in:
Iván Martínez 2023-05-13 10:36:57 +02:00 committed by GitHub
commit b76a240714
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 38 additions and 11 deletions

View File

@ -1,35 +1,62 @@
import os import os
import glob
from typing import List
from dotenv import load_dotenv from dotenv import load_dotenv
from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma from langchain.vectorstores import Chroma
from langchain.embeddings import LlamaCppEmbeddings from langchain.embeddings import LlamaCppEmbeddings
from langchain.docstore.document import Document
from constants import CHROMA_SETTINGS from constants import CHROMA_SETTINGS
load_dotenv() load_dotenv()
def load_single_document(file_path: str) -> Document:
# Loads a single document from a file path
if file_path.endswith(".txt"):
loader = TextLoader(file_path, encoding="utf8")
elif file_path.endswith(".pdf"):
loader = PDFMinerLoader(file_path)
elif file_path.endswith(".csv"):
loader = CSVLoader(file_path)
return loader.load()[0]
def load_documents(source_dir: str) -> List[Document]:
# Loads all documents from source documents directory
txt_files = glob.glob(os.path.join(source_dir, "**/*.txt"), recursive=True)
pdf_files = glob.glob(os.path.join(source_dir, "**/*.pdf"), recursive=True)
csv_files = glob.glob(os.path.join(source_dir, "**/*.csv"), recursive=True)
all_files = txt_files + pdf_files + csv_files
return [load_single_document(file_path) for file_path in all_files]
def main(): def main():
llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL') # Load environment variables
persist_directory = os.environ.get('PERSIST_DIRECTORY') persist_directory = os.environ.get('PERSIST_DIRECTORY')
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL')
model_n_ctx = os.environ.get('MODEL_N_CTX') model_n_ctx = os.environ.get('MODEL_N_CTX')
# Load document and split in chunks
for root, dirs, files in os.walk("source_documents"): # Load documents and split in chunks
for file in files: print(f"Loading documents from {source_directory}")
if file.endswith(".txt"): documents = load_documents(source_directory)
loader = TextLoader(os.path.join(root, file), encoding="utf8")
elif file.endswith(".pdf"):
loader = PDFMinerLoader(os.path.join(root, file))
elif file.endswith(".csv"):
loader = CSVLoader(os.path.join(root, file))
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
texts = text_splitter.split_documents(documents) texts = text_splitter.split_documents(documents)
print(f"Loaded {len(documents)} documents from {source_directory}")
print(f"Split into {len(texts)} chunks of text (max. 500 tokens each)")
# Create embeddings # Create embeddings
llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx) llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
# Create and store locally vectorstore # Create and store locally vectorstore
db = Chroma.from_documents(texts, llama, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS) db = Chroma.from_documents(texts, llama, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
db.persist() db.persist()
db = None db = None
if __name__ == "__main__": if __name__ == "__main__":
main() main()