Multi language support - fern debug (#1307)

---------

Co-authored-by: Louis <lpglm@orange.fr>
Co-authored-by: LeMoussel <cnhx27@gmail.com>
This commit is contained in:
Iván Martínez 2023-11-25 14:34:23 +01:00 committed by GitHub
parent e8d88f8952
commit 944c43bfa8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 402 additions and 8 deletions

View File

@ -28,7 +28,7 @@ jobs:
env:
FERN_TOKEN: ${{ secrets.FERN_TOKEN }}
run: |
output=$(fern generate --docs --preview)
output=$(fern generate --docs --preview --log-level debug)
echo "$output"
# Extract the URL
preview_url=$(echo "$output" | grep -oP '(?<=Published docs to )https://[^\s]*')

View File

@ -44,6 +44,10 @@ navigation:
# Manual of privateGPT: how to use it and configure it
- tab: manual
layout:
- section: General configuration
contents:
- page: Configuration
path: ./docs/pages/manual/settings.mdx
- section: Document management
contents:
- page: Ingestion

View File

@ -1,4 +1,4 @@
# Configure your private GPT
# Settings and profiles for your private GPT
The configuration of your private GPT server is done thanks to `settings` files (more precisely `settings.yaml`).
These text files are written using the [YAML](https://en.wikipedia.org/wiki/YAML) syntax.

View File

@ -1,8 +1,41 @@
## List of working LLM
# List of working LLM
**Do you have any working combination of LLM and embeddings?**
Please open a PR to add it to the list, and come on our Discord to tell us about it!
## Prompt style
LLMs might have been trained with different prompt styles.
The prompt style is the way the prompt is written, and how the system message is injected in the prompt.
For example, `llama2` looks like this:
```text
<s>[INST] <<SYS>>
{{ system_prompt }}
<</SYS>>
{{ user_message }} [/INST]
```
While `default` (the `llama_index` default) looks like this:
```text
system: {{ system_prompt }}
user: {{ user_message }}
assistant: {{ assistant_message }}
```
And the "`tag`" style looks like this:
```text
<|system|>: {{ system_prompt }}
<|user|>: {{ user_message }}
<|assistant|>: {{ assistant_message }}
```
Some LLMs will not understand this prompt style, and will not work (returning nothing).
You can try to change the prompt style to `default` (or `tag`) in the settings, and it will
change the way the messages are formatted to be passed to the LLM.
## Example of configuration
You might want to change the prompt depending on the language and model you are using.
@ -15,6 +48,7 @@ local:
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.1-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.1.Q4_K_M.gguf
embedding_hf_model_name: BAAI/bge-small-en-v1.5
prompt_style: "llama2"
```
### French, with instructions
@ -25,4 +59,26 @@ local:
llm_hf_repo_id: TheBloke/Vigogne-2-7B-Instruct-GGUF
llm_hf_model_file: vigogne-2-7b-instruct.Q4_K_M.gguf
embedding_hf_model_name: dangvantuan/sentence-camembert-base
prompt_style: "default"
# prompt_style: "tag" # also works
# The default system prompt is injected only when the `prompt_style` != default, and there are no system message in the discussion
# default_system_prompt: Vous êtes un assistant IA qui répond à la question posée à la fin en utilisant le contexte suivant. Si vous ne connaissez pas la réponse, dites simplement que vous ne savez pas, n'essayez pas d'inventer une réponse. Veuillez répondre exclusivement en français.
```
You might want to change the prompt as the one above might not directly answer your question.
You can read online about how to write a good prompt, but in a nutshell, make it (extremely) directive.
You can try and troubleshot your prompt by writing multiline requests in the UI, while
writing your interaction with the model, for example:
```text
Tu es un programmeur senior qui programme en python et utilise le framework fastapi. Ecrit moi un serveur qui retourne "hello world".
```
Another example:
```text
Context: None
Situation: tu es au milieu d'un champ.
Tache: va a la rivière, en bas du champ.
Décrit comment aller a la rivière.
```

View File

@ -1,4 +1,4 @@
{
"organization": "privategpt",
"version": "0.15.0-rc80"
"version": "0.15.3"
}

View File

@ -1,8 +1,8 @@
from injector import inject, singleton
from llama_index.llms import MockLLM
from llama_index.llms.base import LLM
from llama_index.llms.llama_utils import completion_to_prompt, messages_to_prompt
from private_gpt.components.llm.prompt_helper import get_prompt_style
from private_gpt.paths import models_path
from private_gpt.settings.settings import Settings
@ -17,6 +17,11 @@ class LLMComponent:
case "local":
from llama_index.llms import LlamaCPP
prompt_style_cls = get_prompt_style(settings.local.prompt_style)
prompt_style = prompt_style_cls(
default_system_prompt=settings.local.default_system_prompt
)
self.llm = LlamaCPP(
model_path=str(models_path / settings.local.llm_hf_model_file),
temperature=0.1,
@ -27,8 +32,8 @@ class LLMComponent:
# All to GPU
model_kwargs={"n_gpu_layers": -1},
# transform inputs into Llama2 format
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
messages_to_prompt=prompt_style.messages_to_prompt,
completion_to_prompt=prompt_style.completion_to_prompt,
verbose=True,
)

View File

@ -0,0 +1,179 @@
import abc
import logging
from collections.abc import Sequence
from typing import Any, Literal
from llama_index.llms import ChatMessage, MessageRole
from llama_index.llms.llama_utils import (
DEFAULT_SYSTEM_PROMPT,
completion_to_prompt,
messages_to_prompt,
)
logger = logging.getLogger(__name__)
class AbstractPromptStyle(abc.ABC):
"""Abstract class for prompt styles.
This class is used to format a series of messages into a prompt that can be
understood by the models. A series of messages represents the interaction(s)
between a user and an assistant. This series of messages can be considered as a
session between a user X and an assistant Y.This session holds, through the
messages, the state of the conversation. This session, to be understood by the
model, needs to be formatted into a prompt (i.e. a string that the models
can understand). Prompts can be formatted in different ways,
depending on the model.
The implementations of this class represent the different ways to format a
series of messages into a prompt.
"""
@abc.abstractmethod
def __init__(self, *args: Any, **kwargs: Any) -> None:
logger.debug("Initializing prompt_style=%s", self.__class__.__name__)
@abc.abstractmethod
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
pass
@abc.abstractmethod
def _completion_to_prompt(self, completion: str) -> str:
pass
def messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
prompt = self._messages_to_prompt(messages)
logger.debug("Got for messages='%s' the prompt='%s'", messages, prompt)
return prompt
def completion_to_prompt(self, completion: str) -> str:
prompt = self._completion_to_prompt(completion)
logger.debug("Got for completion='%s' the prompt='%s'", completion, prompt)
return prompt
class AbstractPromptStyleWithSystemPrompt(AbstractPromptStyle, abc.ABC):
_DEFAULT_SYSTEM_PROMPT = DEFAULT_SYSTEM_PROMPT
def __init__(self, default_system_prompt: str | None) -> None:
super().__init__()
logger.debug("Got default_system_prompt='%s'", default_system_prompt)
self.default_system_prompt = default_system_prompt
class DefaultPromptStyle(AbstractPromptStyle):
"""Default prompt style that uses the defaults from llama_utils.
It basically passes None to the LLM, indicating it should use
the default functions.
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
# Hacky way to override the functions
# Override the functions to be None, and pass None to the LLM.
self.messages_to_prompt = None # type: ignore[method-assign, assignment]
self.completion_to_prompt = None # type: ignore[method-assign, assignment]
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
return ""
def _completion_to_prompt(self, completion: str) -> str:
return ""
class Llama2PromptStyle(AbstractPromptStyleWithSystemPrompt):
"""Simple prompt style that just uses the default llama_utils functions.
It transforms the sequence of messages into a prompt that should look like:
```text
<s> [INST] <<SYS>> your system prompt here. <</SYS>>
user message here [/INST] assistant (model) response here </s>
```
"""
def __init__(self, default_system_prompt: str | None = None) -> None:
# If no system prompt is given, the default one of the implementation is used.
super().__init__(default_system_prompt=default_system_prompt)
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
return messages_to_prompt(messages, self.default_system_prompt)
def _completion_to_prompt(self, completion: str) -> str:
return completion_to_prompt(completion, self.default_system_prompt)
class TagPromptStyle(AbstractPromptStyleWithSystemPrompt):
"""Tag prompt style (used by Vigogne) that uses the prompt style `<|ROLE|>`.
It transforms the sequence of messages into a prompt that should look like:
```text
<|system|>: your system prompt here.
<|user|>: user message here
(possibly with context and question)
<|assistant|>: assistant (model) response here.
```
FIXME: should we add surrounding `<s>` and `</s>` tags, like in llama2?
"""
def __init__(self, default_system_prompt: str | None = None) -> None:
# We have to define a default system prompt here as the LLM will not
# use the default llama_utils functions.
default_system_prompt = default_system_prompt or self._DEFAULT_SYSTEM_PROMPT
super().__init__(default_system_prompt)
self.system_prompt: str = default_system_prompt
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
messages = list(messages)
if messages[0].role != MessageRole.SYSTEM:
logger.info(
"Adding system_promt='%s' to the given messages as there are none given in the session",
self.system_prompt,
)
messages = [
ChatMessage(content=self.system_prompt, role=MessageRole.SYSTEM),
*messages,
]
return self._format_messages_to_prompt(messages)
def _completion_to_prompt(self, completion: str) -> str:
return (
f"<|system|>: {self.system_prompt.strip()}\n"
f"<|user|>: {completion.strip()}\n"
"<|assistant|>: "
)
@staticmethod
def _format_messages_to_prompt(messages: list[ChatMessage]) -> str:
"""Format message to prompt with `<|ROLE|>: MSG` style."""
assert messages[0].role == MessageRole.SYSTEM
prompt = ""
for message in messages:
role = message.role
content = message.content or ""
message_from_user = f"<|{role.lower()}|>: {content.strip()}"
message_from_user += "\n"
prompt += message_from_user
# we are missing the last <|assistant|> tag that will trigger a completion
prompt += "<|assistant|>: "
return prompt
def get_prompt_style(
prompt_style: Literal["default", "llama2", "tag"] | None
) -> type[AbstractPromptStyle]:
"""Get the prompt style to use from the given string.
:param prompt_style: The prompt style to use.
:return: The prompt style to use.
"""
if prompt_style is None or prompt_style == "default":
return DefaultPromptStyle
elif prompt_style == "llama2":
return Llama2PromptStyle
elif prompt_style == "tag":
return TagPromptStyle
raise ValueError(f"Unknown prompt_style='{prompt_style}'")

View File

@ -91,7 +91,28 @@ class VectorstoreSettings(BaseModel):
class LocalSettings(BaseModel):
llm_hf_repo_id: str
llm_hf_model_file: str
embedding_hf_model_name: str
embedding_hf_model_name: str = Field(
description="Name of the HuggingFace model to use for embeddings"
)
prompt_style: Literal["default", "llama2", "tag"] = Field(
"llama2",
description=(
"The prompt style to use for the chat engine. "
"If `default` - use the default prompt style from the llama_index. It should look like `role: message`.\n"
"If `llama2` - use the llama2 prompt style from the llama_index. Based on `<s>`, `[INST]` and `<<SYS>>`.\n"
"If `tag` - use the `tag` prompt style. It should look like `<|role|>: message`. \n"
"`llama2` is the historic behaviour. `default` might work better with your custom models."
),
)
default_system_prompt: str | None = Field(
None,
description=(
"The default system prompt to use for the chat engine. "
"If none is given - use the default system prompt (from the llama_index). "
"Please note that the default prompt might not be the same for all prompt styles. "
"Also note that this is only used if the first message is not a system message. "
),
)
class SagemakerSettings(BaseModel):

View File

@ -30,6 +30,7 @@ qdrant:
path: local_data/private_gpt/qdrant
local:
prompt_style: "llama2"
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.1-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.1.Q4_K_M.gguf
embedding_hf_model_name: BAAI/bge-small-en-v1.5

128
tests/test_prompt_helper.py Normal file
View File

@ -0,0 +1,128 @@
import pytest
from llama_index.llms import ChatMessage, MessageRole
from private_gpt.components.llm.prompt_helper import (
DefaultPromptStyle,
Llama2PromptStyle,
TagPromptStyle,
get_prompt_style,
)
@pytest.mark.parametrize(
("prompt_style", "expected_prompt_style"),
[
("default", DefaultPromptStyle),
("llama2", Llama2PromptStyle),
("tag", TagPromptStyle),
],
)
def test_get_prompt_style_success(prompt_style, expected_prompt_style):
assert get_prompt_style(prompt_style) == expected_prompt_style
def test_get_prompt_style_failure():
prompt_style = "unknown"
with pytest.raises(ValueError) as exc_info:
get_prompt_style(prompt_style)
assert str(exc_info.value) == f"Unknown prompt_style='{prompt_style}'"
def test_tag_prompt_style_format():
prompt_style = TagPromptStyle()
messages = [
ChatMessage(content="You are an AI assistant.", role=MessageRole.SYSTEM),
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
"<|system|>: You are an AI assistant.\n"
"<|user|>: Hello, how are you doing?\n"
"<|assistant|>: "
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
def test_tag_prompt_style_format_with_system_prompt():
system_prompt = "This is a system prompt from configuration."
prompt_style = TagPromptStyle(default_system_prompt=system_prompt)
messages = [
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
f"<|system|>: {system_prompt}\n"
"<|user|>: Hello, how are you doing?\n"
"<|assistant|>: "
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
messages = [
ChatMessage(
content="FOO BAR Custom sys prompt from messages.", role=MessageRole.SYSTEM
),
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
"<|system|>: FOO BAR Custom sys prompt from messages.\n"
"<|user|>: Hello, how are you doing?\n"
"<|assistant|>: "
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
def test_llama2_prompt_style_format():
prompt_style = Llama2PromptStyle()
messages = [
ChatMessage(content="You are an AI assistant.", role=MessageRole.SYSTEM),
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
"<s> [INST] <<SYS>>\n"
" You are an AI assistant. \n"
"<</SYS>>\n"
"\n"
" Hello, how are you doing? [/INST]"
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
def test_llama2_prompt_style_with_system_prompt():
system_prompt = "This is a system prompt from configuration."
prompt_style = Llama2PromptStyle(default_system_prompt=system_prompt)
messages = [
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
"<s> [INST] <<SYS>>\n"
f" {system_prompt} \n"
"<</SYS>>\n"
"\n"
" Hello, how are you doing? [/INST]"
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
messages = [
ChatMessage(
content="FOO BAR Custom sys prompt from messages.", role=MessageRole.SYSTEM
),
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
"<s> [INST] <<SYS>>\n"
" FOO BAR Custom sys prompt from messages. \n"
"<</SYS>>\n"
"\n"
" Hello, how are you doing? [/INST]"
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt