note on instructions for .env

This commit is contained in:
Andrea Pinto 2023-05-12 11:15:51 +02:00
parent 39df61ca07
commit 718b67715c
1 changed files with 7 additions and 5 deletions

View File

@ -13,18 +13,20 @@ In order to set your environment up to run the code here, first install all requ
pip install -r requirements.txt
```
Rename example.env to .env and edit the variables appropriately.
Then, download the 2 models and place them in a directory of your choice.
- LLM: default to [ggml-gpt4all-j-v1.3-groovy.bin](https://gpt4all.io/models/ggml-gpt4all-j-v1.3-groovy.bin). If you prefer a different GPT4All-J compatible model, just download it and reference it in your `.env` file.
- Embedding: default to [ggml-model-q4_0.bin](https://huggingface.co/Pi3141/alpaca-native-7B-ggml/resolve/397e872bf4c83f4c642317a5bf65ce84a105786e/ggml-model-q4_0.bin). If you prefer a different compatible Embeddings model, just download it and reference it in your `.env` file.
Rename `example.env` to `.env` and edit the variables appropriately.
```
MODEL_TYPE: supports LlamaCpp or GPT4All
PERSIST_DIRECTORY: is the folder you want your vectorstore in
LLAMA_EMBEDDINGS_MODEL: Path to your LlamaCpp supported embeddings model
LLAMA_EMBEDDINGS_MODEL: (absolute) Path to your LlamaCpp supported embeddings model
MODEL_PATH: Path to your GPT4All or LlamaCpp supported LLM
MODEL_N_CTX: Maximum token limit for both embeddings and LLM models
```
Then, download the 2 models and place them in a directory of your choice (Ensure to update your .env with the model paths):
- LLM: default to [ggml-gpt4all-j-v1.3-groovy.bin](https://gpt4all.io/models/ggml-gpt4all-j-v1.3-groovy.bin). If you prefer a different GPT4All-J compatible model, just download it and reference it in your `.env` file.
- Embedding: default to [ggml-model-q4_0.bin](https://huggingface.co/Pi3141/alpaca-native-7B-ggml/resolve/397e872bf4c83f4c642317a5bf65ce84a105786e/ggml-model-q4_0.bin). If you prefer a different compatible Embeddings model, just download it and reference it in your `.env` file.
Note: because of the way `langchain` loads the `LLAMMA` embeddings, you need to specify the absolute path of your embeddings model binary. This means it will not work if you use a home directory shortcut (eg. `~/` or `$HOME/`).
## Test dataset
This repo uses a [state of the union transcript](https://github.com/imartinez/privateGPT/blob/main/source_documents/state_of_the_union.txt) as an example.