feat(llm): adds serveral settings for llamacpp and ollama (#1703)

This commit is contained in:
icsy7867 2024-03-11 17:51:05 -04:00 committed by GitHub
parent 410bf7a71f
commit 02dc83e8e9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 91 additions and 8 deletions

View File

@ -1,4 +1,5 @@
"""private-gpt."""
import logging
import os

View File

@ -39,16 +39,23 @@ class LLMComponent:
) from e
prompt_style = get_prompt_style(settings.llamacpp.prompt_style)
settings_kwargs = {
"tfs_z": settings.llamacpp.tfs_z, # ollama and llama-cpp
"top_k": settings.llamacpp.top_k, # ollama and llama-cpp
"top_p": settings.llamacpp.top_p, # ollama and llama-cpp
"repeat_penalty": settings.llamacpp.repeat_penalty, # ollama llama-cpp
"n_gpu_layers": -1,
"offload_kqv": True,
}
self.llm = LlamaCPP(
model_path=str(models_path / settings.llamacpp.llm_hf_model_file),
temperature=0.1,
temperature=settings.llm.temperature,
max_new_tokens=settings.llm.max_new_tokens,
context_window=settings.llm.context_window,
generate_kwargs={},
callback_manager=LlamaIndexSettings.callback_manager,
# All to GPU
model_kwargs={"n_gpu_layers": -1, "offload_kqv": True},
model_kwargs=settings_kwargs,
# transform inputs into Llama2 format
messages_to_prompt=prompt_style.messages_to_prompt,
completion_to_prompt=prompt_style.completion_to_prompt,
@ -108,8 +115,22 @@ class LLMComponent:
) from e
ollama_settings = settings.ollama
settings_kwargs = {
"tfs_z": ollama_settings.tfs_z, # ollama and llama-cpp
"num_predict": ollama_settings.num_predict, # ollama only
"top_k": ollama_settings.top_k, # ollama and llama-cpp
"top_p": ollama_settings.top_p, # ollama and llama-cpp
"repeat_last_n": ollama_settings.repeat_last_n, # ollama
"repeat_penalty": ollama_settings.repeat_penalty, # ollama llama-cpp
}
self.llm = Ollama(
model=ollama_settings.llm_model, base_url=ollama_settings.api_base
model=ollama_settings.llm_model,
base_url=ollama_settings.api_base,
temperature=settings.llm.temperature,
context_window=settings.llm.context_window,
additional_kwargs=settings_kwargs,
)
case "mock":
self.llm = MockLLM()

View File

@ -137,9 +137,11 @@ class VectorStoreComponent:
index=index,
similarity_top_k=similarity_top_k,
doc_ids=context_filter.docs_ids if context_filter else None,
filters=_doc_id_metadata_filter(context_filter)
if self.settings.vectorstore.database != "qdrant"
else None,
filters=(
_doc_id_metadata_filter(context_filter)
if self.settings.vectorstore.database != "qdrant"
else None
),
)
def close(self) -> None:

View File

@ -1,4 +1,5 @@
"""FastAPI app creation, logger configuration and main API routes."""
import logging
from fastapi import Depends, FastAPI, Request

View File

@ -12,6 +12,7 @@ Authorization can be done by following fastapi's guides:
* https://fastapi.tiangolo.com/tutorial/security/
* https://fastapi.tiangolo.com/tutorial/dependencies/dependencies-in-path-operation-decorators/
"""
# mypy: ignore-errors
# Disabled mypy error: All conditional function variants must have identical signatures
# We are changing the implementation of the authenticated method, based on

View File

@ -98,6 +98,10 @@ class LLMSettings(BaseModel):
"like `HuggingFaceH4/zephyr-7b-beta`. If not set, will load a tokenizer matching "
"gpt-3.5-turbo LLM.",
)
temperature: float = Field(
0.1,
description="The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual.",
)
class VectorstoreSettings(BaseModel):
@ -119,6 +123,23 @@ class LlamaCPPSettings(BaseModel):
),
)
tfs_z: float = Field(
1.0,
description="Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting.",
)
top_k: int = Field(
40,
description="Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)",
)
top_p: float = Field(
0.9,
description="Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)",
)
repeat_penalty: float = Field(
1.1,
description="Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)",
)
class HuggingFaceSettings(BaseModel):
embedding_hf_model_name: str = Field(
@ -184,6 +205,30 @@ class OllamaSettings(BaseModel):
None,
description="Model to use. Example: 'nomic-embed-text'.",
)
tfs_z: float = Field(
1.0,
description="Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting.",
)
num_predict: int = Field(
None,
description="Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context)",
)
top_k: int = Field(
40,
description="Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)",
)
top_p: float = Field(
0.9,
description="Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)",
)
repeat_last_n: int = Field(
64,
description="Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)",
)
repeat_penalty: float = Field(
1.1,
description="Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)",
)
class UISettings(BaseModel):

View File

@ -1,4 +1,5 @@
"""This file should be imported only and only if you want to run the UI locally."""
import itertools
import logging
import time

View File

@ -5,6 +5,7 @@ llm:
mode: ollama
max_new_tokens: 512
context_window: 3900
temperature: 0.1 #The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1)
embedding:
mode: ollama
@ -13,10 +14,14 @@ ollama:
llm_model: mistral
embedding_model: nomic-embed-text
api_base: http://localhost:11434
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting.
top_k: 40 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)
top_p: 0.9 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)
repeat_last_n: 64 # Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)
repeat_penalty: 1.2 # Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)
vectorstore:
database: qdrant
qdrant:
path: local_data/private_gpt/qdrant

View File

@ -39,11 +39,16 @@ llm:
# Should be matching the selected model
max_new_tokens: 512
context_window: 3900
temperature: 0.1 # The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1)
llamacpp:
prompt_style: "mistral"
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.2-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.2.Q4_K_M.gguf
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting
top_k: 40 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)
top_p: 1.0 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)
repeat_penalty: 1.1 # Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)
embedding:
# Should be matching the value above in most cases

View File

@ -5,6 +5,7 @@ NOTE: We are not testing the switch based on the config in
is currently architecture (it is hard to patch the `settings` and the app while
the tests are directly importing them).
"""
from typing import Annotated
import pytest